Separation and Analysis of Low Molecular Weight Organic Acid Metabolites by Mixed-Mode Chromatography Coupled to Mass Spectrometry

Kerri M. Smith, Paul D. Rainville Waters Corporation, Milford, MA USA

INTRODUCTION

Human breast cancer positive urine samples (figure 1) were The components of the Tricarboxylic acid (TCA) cycle are small and very polar organic carboxylic acids. Traditional methods of diluted 10x with MQ H2O, centrifuged 10 minutes at 4° C and 21130 rcf. The supernatant was transferred to a silanized total reversed phase chromatography do not always yield enough retention or selectivity to confidently measure these analytes. recovery vial for analysis. The samples were separated on an Current separations include HILIC, ion-pairing, anion exchange, ACQUITY I-Class LC with an ACQUITY UPLC CSH Phenyland derivitization followed by gas or liquid chromatography Hexyl 2.1 x 100mm 1.7um column using 0.1% formic acid in water and ACN for mobile phases A and B. The gradient was separation with each technique presenting its own unique from 0 - 25%B over 4 minutes with a flow rate of 0.4 mL/min and challenges. Here we present a new analytical method for the a column temperature of 60° C. The LC was connected to a analysis of the TCA cycle metabolites as well as other related Xevo G2-XS time of flight mass spectrometer which was compounds without sample derivitization or ion-pairing reagents in the mobile phase. We applied the analytical method to a operated in negative ionization ionization. The data was acquired in continuum format using MS^e acquisition mode of MassLynx breast cancer urine samples and used statistical software for 4.1 and further processed using Progenesis QI as well as EZinfo feature analysis. software.

19229	19230 (very dilute)	19231	19232
In CATALOG # 1444 CATALOG # 1	-mi- Calace Descrit Beach Beach		10 10 10 10 10 10 10 10 10 10 10 10 10 1

Figure 1. Four breast cancer positive urine samples (female)

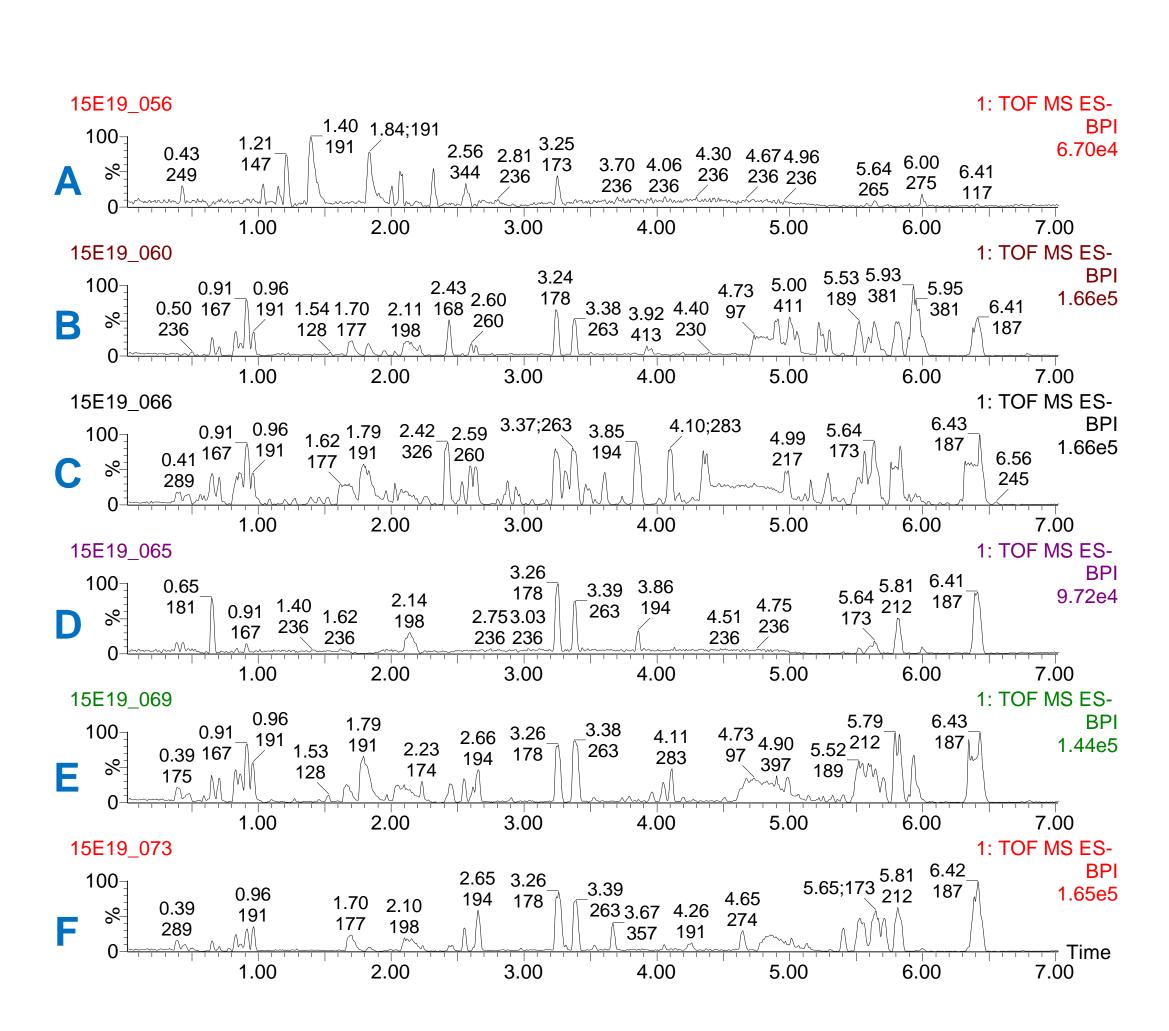


Figure 2. Separation of urinary metabolites, underivatized, on an ACQUITY CSH Phenyl-Hexyl Column; A) Standard Mix in H2O, B) Non-Disease female urine sample, C) 19929, D) 19930, E) 19931, F) 19932 Retention times of standards: lactate, 1.0; malate, 1.15; succinate, 1.2; 2hydroxyglutarate, 1.2; isocitrate, 1.4; citrate, 1.8; fumarate, 2.0; pyruvate, 2.3; α-ketoglutarate, 2.3; phosphoenolpyruvate, 2.9; cis-aconitate, 3.3;

METHODS

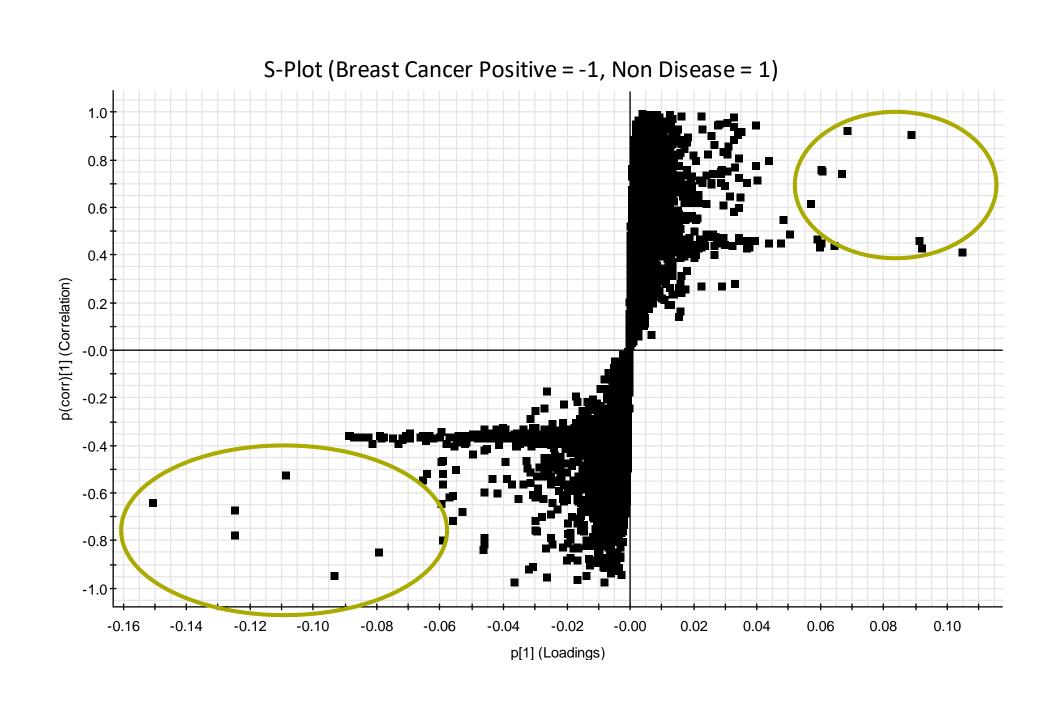


Figure 4. S-Plot of the major differences between the breast cancer positive and non-disease urine samples

WORKFLOW AND PRELIMINARY RESULTS

The components of the TCA cycle are small and very polar organic carboxylic acids. Traditional methods of reversed phase chromatography do not always yield enough retention or selectivity to confidently measure these analytes. Citric acid and isocitric acid, for example, are isobaric at 191 m/z and require chromatographic resolution for accurate determination. To address the separation and retention of the critical pairs and polar species of the TCA metabolites and other biologically relevant compounds, a mixed-mode chromatography method was developed. Here the ACQUITY UPLC CSH Phenyl-Hexyl column was employed for separation and analysis of organic acid metabolites in urine. Figure 2 gives examples of the separation in standard as wells as non-disease and breast cancer positive urine. Breast cancer positive urine as well as non-disease urine samples (female) were injected with 5 replicates. A pooled sample of equal volumes of each disease and non-disease sample was also acquired (labeled pool). The injections were imported into and processed by Progenesis QI with further statistical modeling performed by EZinfo (figures 3 and 4). Markers were selected and transferred back to Progenesis QI for investigation and identification by library searches: HMDB and KEGG as well as METLIN MS/MS (figures 5 and 6). Compound abundance for the top markers were reviewed (figure 7) and XIC extracted from original data (figure 8). Proposed identifications for the compounds were listed and will be confirmed using commercial standards.



Figure 6. Identification of known compound, citric acid

CONCLUSION AND FUTURE WORK

Breast cancer positive and non-disease female urine samples were separated and analyzed using an ACQUITY CSH Phenyl-Hexyl column and simple mobile phase of 0.1% formic acid in water and ACN. The analysis was interrogated by Progenesis QI and EZinfo software to determine the most prominent differences between the samples. Library searching revealed potential identifications of features. These identifications will be tested using commercial standards

rganie acias onne	Breast Cancer a	nd NonDisc	ease	SENS - Pr	rogenesis QI												Ð
ile Revie ort Data Alignm			c Pic			Identify mpoun			eview.		oound istics					nonline	ea
			•		•											A Waters Com	par
compound: Se	arch	J	p	Fil	lter compound	ls ▼	Filt	er is	activ	e						@ H	elp
pound	Neutral mass	m/z	z	Retentior	r Peak Width	Tag	-	A	Ider	Anova (p)	q Value	Max fold change	Highest mean	Lowest mean	Isotope distribution	Max Abundance	
3_295.0894m/z	<unknown></unknown>	295.0894	1	0.83	0.11	4			22	< 1.1E-16	< 1.1E-16	462	Breast Cancer Positive	Non Disease		9978.3937	*
4_190.0532n	190.0532	235.0568	1	0.94	0.24	4			0	< 1.1E-16	< 1.1E-16	22.4	Breast Cancer Positive	Non Disease		24461.2759	
4_364.0361n	364.0361	363.0280	1	3.34	0.10	4			1	< 1.1E-16	< 1.1E-16	2.71	Breast Cancer Positive	Non Disease		134465.1370	
7_447.2977n	447.2977	446.2904	1	5.97	0.07	4			1	5.08E-14	9.74E-13	8.07	Breast Cancer Positive	Non Disease		12369.7012	
3_206.9961m/z	<unknown></unknown>	206.9961	1	4.53	0.13	4			8	1.03E-12	1.51E-11	2.07	Non Disease	Breast Cancer Positive		29811.5682	
7_367.0289n	367.0289	412.0309	1	0.67	0.16	4			3	1.67E-12	2.3E-11	2.61	Breast Cancer Positive	Non Disease	.	10969.7461	
5_179.8821m/z	<unknown></unknown>	179.8821	1	6.36	0.22	4			0	3.5E-12	4.5E-11	2.97	Breast Cancer Positive	Non Disease		35166.2803	
5_189.0036m/z	<unknown></unknown>	189.0036	1	6.36	0.19	4			8	2.27E-11	2.41E-10	2.49	Breast Cancer Positive	Non Disease		112083.7827	-
pound abundan		Breast Can	_		ige						Non [Disease			Pool		
3.5 4 3.0 4 2.5 4 2.0 4 1.5 4										►							
1.5											E.						
2.5 2.0 1.5 1.0 0.5											<u>R</u>	1				•	
12.5 + 12.0 + 11.5 + 11.0 + 10.5 + ↓															Secti	ion Complete	•

Compound 0.83_295.0	ompound 0.83_295.0894m/z:								
Compound abundance	Possible identifications 3D Montage								
	Breast Cancer Positive	Non Disease	Pool						
- 10.8666667	X		¥ ● €						
ArcSinh Normalis		- ₽ ₩ 1 ●							
4			•						
	Section Complete 🕥								

A) xanosine monophosphate B) aspartate-tyrosine dipeptide,