DETERMINATION OF PESTICIDE RESIDUES IN RICE-BASED BABY FOOD USING GC-MS/MS WITH APGC™ AFTER EXTRACTION AND CLEAN UP USING QUECHERS Stuart J. Adams¹, Mette E. Poulsen², Janithia De-Alwis¹ ¹Waters Corporation, Wilmslow, United Kingdom; ²National Food Institute, Technical University of Denmark, Lyngby, Denmark ### INTRODUCTION In Europe, specific maximum residue levels (MRLs) were set for food intended for infants and young children. Commission Directive 2006/125/ EC specifically applies to processed cereal-based foods and baby foods for infants and young children and Commission Delegated Regulation (EU) 2021/1041 amending Delegated Regulation (EU) 2016/127 deals with the requirements for pesticides in infant formulae and follow-on formulae.^{1,2} Following the precautionary principle, the legal limits for these types of food products were set at very low levels. In general, the default MRL of 0.01 mg/kg is applicable but more severe limitations were set for pesticides or metabolites of pesticides with an ADI lower that 0.0005 mg/kg body weight per day. Certain pesticides have MRLs listed at lower concentration (0.004 -0.008 mg/kg) and others should not be used at all in agricultural production intended for infant formula and baby food. These analytes need to be tested down to a reporting limit of at least 0.003 mg/kg which can be analytical challenging. The objective of this study was to demonstrate the performance of a method for the determination of residues of pesticides and their metabolites, at concentrations suitable for checking MRL compliance in baby foods and lower, using GC-MS/MS with APGC on Xevo TQ-XS. For more information on the ionization mechanism for APGC please read our white paper (LINK). ## **METHODS** ### Sample preparation A QuEChERS extraction protocol was used for sample extraction with dSPE clean-up. In brief 5 g of infant food sample was added to a 50 mL falcon tube. It was hydrated, 10 mL of acetonitrile was added and shaken vigorously by hand for 1 minute. The QuEChERS salts were added (4g MgSO₄, 1 g NaCl, 1g Na₃ citrate dihydrate and 0.5 g Na₂H citrate sesquihydrate) and shaken. The sample was centrifuged and then frozen overnight. Then 6 mL was taken and 900 mg MgSO₄ and 150 mg PSA was added and the tube shaken. The sample was centrifuged, then formic acid was added and the extract diluted 1:1 with acetonitrile ready for injection onto the GC-MS/MS.³ The 2 spike levels used for the validation batch were 0.0005 and 0.001 mg/kg with 5 replicates at each level. ### Instrument methods GC Conditions: Conditions previously published (LINK) MS System: Xevo TQ-XS Source Type: APGC 2.0 with water as a modifier Source Temp: 150°C Transfer line temp: 280°C Corona current: 2.0 µA Auxiliary gas flow: 200 L/hr Cone gas flow: 265 L/hr #### **RESULTS AND DISCUSSION** The sensitivity of the method was evaluated by assessment of the response of the matrix-matched standards at the lowest concentration prepared (0.0003~mg/kg or $0.3~\mu\text{g/kg}$) for 166 pesticides. Results for 2-phenylphenol were discounted due to a detected residue in the blank. Of the remaining 165 analytes all but one could be detected at 0.0003~mg/kg. The limit of detection for thiometon was 0.005~mg/kg. Figure 1 shows chromatograms for a selection of priority pesticides in baby food in the 0.0005~mg/kg matrix matched standard, which demonstrates the sensitivity of this method. Figure 1. Chromatograms from the analysis of a selection of priority pesticides in the baby food matrix-matched standard at 0.0005 mg/kg The lowest calibration level for each analyte was established by evaluation of the bracketed calibration graph. Of the 165 pesticides in the method 96% exhibited residuals within \pm 20% SANTE tolerance and 95% had $\rm r^2$ values >0.98.⁴ Figure 2. Summary of the recoveries (%) from the analysis of spiked baby food. Figure 3. Summary of the repeatability (% RSD_r) from the analysis of spiked baby food Identification criteria, retention time and ion ratios, were calculated. All pesticides' retention times were within the \pm 0.1 min from the calibration reference standard. Ion ratios were assessed against the average from the calibration standards and 94% were within \pm 30% tolerance. The spiked samples recoveries were assessed against the SANTE guidelines where the average recovery for each spike level tested should be between 70 -120%. For the lower spike level 90% of pesticides were within this tolerance and 92% at the higher spiking levels. Figure 2 displays a summary of the recovery results obtained. The repeatability (RSDr) of the method was assessed against the SANTE guideline values of RSDr should be \leq 20%. At 0.0005 mg/kg (0.5 µg/kg) 96% of the pesticides were within this tolerance. At the higher spike level of 0.001 mg/kg (1 µg/kg) all the analytes exhibited values for RSDr \leq 20%. Figure 3 displays a summary of this information. ## **CONCLUSION** The method exhibited very high sensitivity (instrument LODs typically ≤ 0.0003 mg/kg) without the need for solvent exchange, PTV or large volume injection. The method was successfully validated according the SANTE guidelines, presenting results for 166 pesticides in rice-based baby food. The results from analysis of the spikes at 0.0005 and 0.001 mg/kg showed that 91% and 98% of the analytes were within the required tolerances for recovery and repeatability, respectively. ### References - Commission Directive 2006/125/EC of 5 December 2006 on - processed cereal-based foods and baby foods for infants Commission Delegated Regulation (EU) 2021/1041 of 16 April 2021 amending Delegated Regulation (EU) 2016/127 as regards the requirements on pesticides in infant formula and follow-on formula. OJ L 225, 25.6.2021, p. 4–6d young children. OJ L 339, 6.12.2006, p. 16–35 - EURL-CF. Validation Report 31A. Determination of pesticide residues in rice based babyfood by LC-MS/MS and GC-MS/MS (QuEChERS method), 2019 - 4. Document No. SANTE/11313/2021. Guidance Document on Analytical Quality, Control, and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. 2019.