

www.chemicke-listy.cz

METÓDY A VYUŽITIE STANOVENIA¹²⁹I URÝCHĽOVAČOVOU HMOTNOSTNOU SPEKTROMETRIOU

Martin Daňo^a, Mojmír Němec^a, Miriam Mindová^a, Jan John^a, Eva Viglašová^b a Bálint Czíferi^b

^a Katedra jaderné chemie, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze, Břehová 78/7, 115 19 Praha 1, ^b Katedra jadrovej chémie, Prírodovedecká fakulta Univerzity Komenského v Bratislave, Ilkovičova 3278/6, 842 15 Bratislava 4 Martin.Dano@fjfi.cvut.cz

Došlo 12.7.22, prijaté 15.8.22.

Hlavným cieľom tohto článku je poskytnúť stručný prehľad o použití a stanovení ¹²⁹I pomocou urýchľovačovej hmotnostnej spektrometrie. Hoci je AMS v súčasnosti najcitlivejšou metódou na stanovenie ¹²⁹I, kľúčovú úlohu pri tejto metóde zohráva príprava cieľových vzoriek. Najčastejšie používané metódy zahŕňajú stratu jódu v dôsledku zvýšenej teploty. Preto by sa ešte stále malo vyvinúť úsilie na nájdenie najvhodnejších metód prípravy jódových vzoriek na merania AMS.

Kľúčové slová: stanovenie jódu, urýchľovačová hmotnostná spektrometria, ¹²⁹I, separácia, prírodné prostredie

Obsah

- 1. Úvod
- Metódy stanovenia ¹²⁹I a ich využitie
 2.1. Možnosti stanovenia ¹²⁹I
 2.2. Aplikácia stanovenia ¹²⁹I
- Príprava vzoriek ¹²⁹I pre meranie metódou urýchľovačovej hmotnostnej spektrometrie
- urýchľovačovej hmotnostnej spektrometrie 4. Stanovenie ¹²⁹I urýchľovačovým hmotnostným spektrometrom
- 5. Záver

1. Úvod

Jód existuje v životnom prostredí v zlúčeninách v rôznych oxidačných stavoch od -I do V. Doposial' nebola objavená prírodná zlúčenina, v ktorej by sa jód vyskytoval vo vyššom nábojovom stave než +5 (cit.¹). Jód v prírode tvorí anorganické (napr. I⁻, IO₃⁻) a organické (napr. CH₃I) formy v kvapalnej i v plynnej fáze a všetky tieto prírodné formy jódu vykazujú rozličné chemické správanie². Toto správanie závisí nielen od povahy samotných chemických foriem, ale aj od redoxných podmienok prostredia, ďalej od komplexačných, redoxných, precipitačných a mikrobiálnych reakcií. Chemické formy, v ktorých sa jód vyskytuje ukazuje závislosť oxidačného potenciálu (Eh od záporného dekadického logaritmu aktivity vodíkových katiónov (pH) na obr. 1 (cit.3). Kľúčovým environmentálnym faktorom ovplyvňujúcim osud a transport rádiojódu v životnom prostredí je organická hmota, ktorá pozostáva z rozkladajúceho sa rastlinstva a exsudátov mikróbov4. Z pôdy sa dostáva cez potravový reťazec až k človeku.

Jód je esenciálnym prvkom pri vývoji ľudského organizmu. Zaisťuje správnu funkciu štítnej žľazy, ktorá riadi produkciu tyroxínu a trijódtyroxínu, hormónov, ktoré ovplyvňujú predovšetkým vývoj pohybovej sústavy a mozgu v ranných fázach vývoja človeka.

Jód má iba jeden stabilný izotop¹²⁷I a dva rádioizotopy environmentálne relevantné pre životné prostredie,¹³¹I

Obr. 1. **Eh-pH diagram chemických foriem jódu.** Údaje získané z databázy HATCHES/FLASK-AQ

Chem. Listy 117, 114–121 (2023)

Materský nuklid	$T_{1/2}^{\ a}$	Typ premeny ^b	Energia premeny [keV]	Materský nuklid
¹²³ I	13,22 h	EZ, β^+	1228	¹²³ Te
124 I	4,18 d	EZ, β ⁺	3160	¹²⁴ Te
¹²⁵ I	59,40 d	EZ, β ⁺	186	¹²⁵ Te
¹²⁶ I	12,93 d	EZ, β ⁺	2154 (52,7 %)	¹²⁶ Te
		β-	1236 (47,3 %)	¹²⁶ Xe
¹²⁷ I	stabilný			
^{128}I	29,99 m	EZ, β ⁺	1256 (6,9 %)	¹²⁸ Xe
		β-,	2123 (93,1 %)	¹²⁸ Te
¹²⁹ I	1,57·10 ⁷ r	β-	189	¹²⁹ Xe
130 I	12,36 h	β-	2944	¹³⁰ Xe
¹³¹ I	8,03 d	β-	971	¹³¹ Xe
¹³² I	2,30 h	β-	3575	¹³² Xe
¹³² I	1,39 h	IT	- (86 %)	^{132}I
		β-	3581 (14 %)	¹³² Xe
¹³³ I	20,83 h	β-	1786	¹³³ Xe
134 I	52,50 m	β-	4082	¹³⁴ Xe
¹³⁵ I	6,58 h	β-	2634	¹³⁵ Xe

Tabuľka I Základné jadrové vlastnosti izotopov jódu s $T_{1/2} > 10$ minút

^a d – deň, h – hodina, m – minúta, r – rok; ^b EZ – elektrónový záchyt, IT – vnútorný prechod

 $(T_{1/2} = 8 \text{ dn}\hat{\text{(}}) \text{ a}^{129}\text{I} (T_{1/2} = 15,7 \text{ mil. rokov)}^5$. Základné jadrové vlastnosti izotopov jódu s dobou polpremeny $(T_{1/2})$ väčšou než 10 minút sú uvedené v tabuľke I (cit.⁵). ¹³¹I a¹²⁹I vznikajú hlavne štiepením ²³⁵U v jadrových reaktoroch, prirodzene spontánnym štiepením ²³⁸U, opäť štiepe ³⁵U vplyvom prírodného neutrónového toku ním a v horných vrstvách atmosféry spalačnými reakciami kozmického žiarenia so Xe. Antropogénnym zdrojom týchto izotopov sú hlavne havárie jadrových zariadení, skúšky jadrových zbraní a taktiež prepracovanie ožiareného jadrového paliva. V priebehu týchto udalostí a procesov sú do prostredia uvoľňované prchavé formy jódu. V atmosfére sa distribuujú vo forme aerosólov a následne sa dostávajú na zemský povrch vo forme spádu. Inhaláciou alebo ingesciou môže potom nastať potenciálne ohrozenie ľudského zdravia. Z hľadiska radiačnej ochrany predstavuje významnú hrozbu bezprostredne po havárií jadrového zariadenia s únikom rádionuklidov izotop 131 I, ktorý sa koncentruje v štítnej žľaze. Jeho množstvo klesá pod úroveň detekcie v kontaminovanej oblasti približne po dvoch mesiacoch⁵. Po havárii je nutné monitorovať i dĺho žijúci ¹²⁹I, ktorý pri akumulácii v organizme dlhodobo pôsobí na gonády a kostnú dreň. Pred využívaním jadrovej energie bol pomer 129 L/ 127 L odhadom medzi 10^{-12} – 10^{-15} . V súčasnosti je tento pomer vyšší, dosahuje hodnôt 10⁻⁶-10⁻⁴. Ako bolo vyššie naznačené, väčšie množstvo 129 I sa uvoľnilo do atmosféry skúškami jadrových zbraní, tým koncentrácia 129 I v životnom prostredí narástla, ďalej aj po haváriách v Černobyle a Fukushime^{4,6}.

Emisie ¹²⁹I sú limitované a tento izotop je sledovaným rádionuklidom v produkovaných rádioaktívnych odpadoch. Spolu s rádionuklidmi, ktoré vytvárajú aniónové formy (³⁶Cl, ⁷⁹Se, ⁹⁹Tc, ¹²⁵Sb a pod.) je nutné ¹²⁹I stanovovať a limitovať jeho aktivitu v úložiskách rádioaktívneho odpadu⁷⁻⁹. To súvisí hlavne s ochotou týchto rádionuklidov tvoriť aniónové, v životnom prostredí dobre mobilné formy.

2. Metódy stanovenia ¹²⁹I a ich využitie

2.1. Možnosti stanovenia ¹²⁹I

V minulosti sa jód chemicky stanovoval pomocou spektrofotometrie, hlavne metódou Sandell-Kolthoff⁹. Táto metóda je pomerne zdĺhavá, nešpecifická, náchylná na interferencie a naviac nedosahuje citlivosť modernejších metód. Stanovenie jódu je v súčasnosti v Českej republike normované zatiaľ iba pre potraviny podľa ČSN EN 15111. Tento predpis určuje jednotný postup stanovenia pomocou hmotnostnej spektrometrie s indukčne viazanou plazmou (ICP-MS)¹¹.

¹²⁹I je možné kvantitatívne stanoviť rôznymi metódami. Rádiochemická neutrónová aktivačná analýza (RNAA) a urýchľovačová hmotnostná spektrometria (Accelerator Mass Spectrometry, AMS) umožňujú oveľa väčšiu citlivosť merania rádiojódu než ICP-MS, pričom

Tabu	ľka	Ш

Detekčné limity rádiometrických a hmotnostne spektrometrických metód merania ¹²⁹I

Metóda	Matrica	Detekčný limit	
		Aktivita	$^{129}\mathrm{I}/^{127}\mathrm{I}$
LSC	$I_2(l)$	10 mBq	$10^{-6} - 10^{-5}$
RNAA	$I_{2}(l)$	1 μBq	10^{-10}
ICP-MS	priame meranie vzorky	$40-100 \ \mu Bq \ cm^{-3}$	$10^{-6} - 10^{-5}$
GC-MS	priame meranie vzorky	$74 \ \mu Bq \ cm^{-3}$	-
AMS	AgI (s)	1 nBq	10^{-14}
			¹²⁹ I/ ^{total} I
γ-Spektrometria	suchý prášok	_	$10^{-7} - 10^{-6}$

AMS má väčšiu citlivosť než RNAA. Nevýhodou RNAA je, že vyžaduje jadrový reaktor. Ďalšou možnosťou je spojenie plynovej chromatografie (GC) s hmotnostnou spektrometriou (MS)¹². V tomto prípade sa citlivosť pohybuje v rozmedzí ICP-MS (cit.¹³).

Aj keď je ¹²⁹I β žiarič, jeho priama kvantifikácia je tiež možná pomocou γ -spektrometrie. Toto meranie však vyžaduje vysoko-čistý germániový detektor typu *n*, s relatívnou účinnosťou >50 %. Dôvodom je, že ¹²⁹I emituje iba dve relatívne nízke energie fotónov vhodné pre detekciu. Jedna leží v oblasti röntgenového žiarenia (29,8 keV) a druhá v oblasti mäkkého γ -žiarenia (39,6 keV). Do stanovenia vstupujú korekčné faktory, ako je napr. korekcia na samoabsorpciu žiarenia v matrici vzorky, korekcia na zoslabenie žiarenia atď. Naviac nie je možné účinne diskriminovať γ -žiarenie ¹²⁹I od ⁴⁰K, preto sa udáva izotopový pomer ¹²⁹I/^{total}I, kde ^{total}I predstavuje špecifickú aktivitu ¹²⁹I + ⁴⁰K. V tab. II sú uvedené detekčné limity pre zmienené metódy stanovenia ¹²⁹I (cit.¹⁴⁻¹⁶). Z vyššie uvedeného a z tab. II vyplýva, že v súčasnosti najcitlivejšou metódou stanovenia ¹²⁹I je AMS.

2.2. Aplikácia stanovenia ¹²⁹I

Okrem zmieneného monitorovania úložísk rádioaktívnych odpadov má ¹²⁹I širokú škálu aplikácií v životnom prostredí. Môže sa uplatniť pri výskume distribúcii ¹²⁹I okolo jadrových zariadení, pretože je jedným z kľúčových rádionuklidov v depozitári jadrového odpadu. Uplatnenie nachádza aj pri retrospektívnej štúdii dávok z jadrových havárií, odhadu expozície ľudí, environmentálnych štúdiách, sledovaní mora – ako vhodný oceánografický stopovač na štúdium transportu a výmeny vodnej masy^{17,18}. Taktiež slúži ako stopovač pre ¹³¹I uvoľnený do prostredia, rovnako ako aj užitočný environmentálny indikátor na skúmanie geochemického cyklu stabilného jódu. Uplatnenie má tiež pri datovaní, napr. organických látok, ako je ropa alebo zemný plyn¹⁹. Dôležitú úlohu môže hrať v jadrovej forenznej analýze^{20,21}.

3. Príprava vzoriek ¹²⁹I pre meranie metódou urýchľovačovej hmotnostnej spektrometrie

Metódy stanovenia súvisia s povahou vzorky, a teda jej úpravou do formy vhodnej pre stanovenie. ¹²⁹I sa stanovuje hlavne vo vzorkách životného prostredia, ako je napr. pôda, rastlinstvo, morská voda, mlieko, vzduch atď. Väčšina metód prípravy vzoriek jódu pre meranie na AMS je veľmi podobná metódam pre ICP-MS. Hlavným problémom pri príprave vzoriek najmä pre ultrastopovú analýzu je prchavosť jódu a jeho zlúčenín a z toho prameniace nebezpečenstvo významnej straty analytu. Ďalším nebezpečenstvom je kontaminácia stanovovaným izotopom ¹²⁹I z chemikálií, či (rádio)stopovačov, ktorá vedie k nesprávnym výsledkom a nutnosti presného stanovenia slepej vzorky.

V súčasnosti pre stanovenie ¹²⁹I v pôdach sú najvyužívanejšími extrakčné metódy založené na použití hydroxidu tetrametylamónneho (TMAH). Jednoduchá extrakcia jódu je najúčinnejšia pri 70 °C a 5 % (w/v) koncentrácií roztoku TMAH (cit.^{22–24}), alebo pri 90 °C počas aspoň 4 h miešania v zatvorenej sklenenej alebo plastovej nádobe²⁵. Najväčším problémom týchto procesov je zvýšená teplota. Jód ochotne vytvára organické formy, ktoré sú extrémne prchavé a zvýšenie teploty má tak za následok zníženie výťažku. Naviac pri zvýšených teplotách má jód tendenciu sa zachytávať na plastových povrchoch. Extrakcia pri izbovej teplote je možná tiež. Yamada a spol. uskutočnili takúto extrakciu s TMAH, pričom sa dosiahol výťažok 96 % (cit.²⁶).

Suziki a spol. vyvinuli extrakčnú metódu ¹²⁹I založenú na aniónovej výmene. Podľa ich postupu sa vzorky pôd najskôr sušia v kremenných trubiciach pri 150 °C počas 10 minút. Potom sa trubica zahreje na 750 °C a prchavý jód je unášaný prúdom plynu ($O_2 + N_2$). Jód sa zachytáva na uhlíkovom filtri, potom sa z neho eluuje 6 M NaOH. K eluátu sa pridá nosič a nechá sa pretekať cez aniónovovýmenný disk 3M EmporeTM. Jód sa zachytí na disku. Po premytí vodou je jód z disku eluovaný 1 M HNO3. Touto procedúrou získali chemický výťažok >80 % (cit.²⁸). Jód je v tomto prípade možné z uhlíkového filtru extrahovať priamo 5 % TMAH pri 90 °C počas asi 8 hodín²⁵.

Alkalické spopolňovanie je tiež jednou z populárnych metód spracovania vzoriek pôd a rastlinstva pre meranie metódou AMS. Wang a spol. postupovali nasledovne. Vysušené rastliny sa pomelú a prenesú do niklového kelímka. K prášku sa pridá stopovač chemického výťažku ¹²⁵I, potom 5 M NaOH. Suspenzia sa potom suší 30 minút pri 100 °C, vzostupom teploty na 350 °C začína jej karbonizácia. Proces skončí po 4 h pri teplote 600 °C. Jód sa po vychladnutí kelímka vylúhuje do pridanej vody pri zvýšenej teplote (70-80 °C). Výluh sa prefiltruje cez 0,45µm membránový filter. Do tohto okamihu je postup spoločný pre AMS a ICP-MS. Pre AMS sa d'alej postupuje mierne odlišne než pre ICP-MS. Do prefiltrovaného roztoku sa pridá 1 mg nosiča ¹²⁷I a 1 M NaHSO₃. Táto zmes sa potom opatrne okyslí s HNO3 na pH 1-2. HNO3 je potrebné pridávať po malých dávkach a postupne, pretože rýchly príspôsobiť prudkú reakciu kyseliny davok môže s prítomnými uhličitanmi, síričitanmi, a tým náhly vývin plynov. Roztok sa prenesie do oddel'ovacieho lievika, pridá sa 30 cm³ CHCl₃, potom 2 cm³ 1 M NaNO₂ pre oxidáciu jodidov do formy I2. Ten sa extrahuje do CHCl3. Jód sa potom spätne extrahuje do 0,02 M NaHSO3. K vodnej fáze obsahujúcej jód sa pridá 1 M AgNO₃. Zrazenina AgI sa separuje centrifugovaním, premyje sa vodou a vysuší. AgI sa zmieša s Nb práškom. To predstavuje konečný produkt, ktorý je zlisovaný do katódy (terča) a následne sa vloží do AMS. Ide o pomerne zdĺhavú a časovo náročnú procedúra. Týmto spôsobom sa podarilo autorom získať >90 % jódu²⁸.

Vzorky jódu zo štítnych žliaz sa pripravujú taktiež spopolňovaním. Postup je veľmi podobný postupom popísaných vyššie. O niečo jednoduchšie sa pripravujú vzorky jódu pochádzajúce z kvapalných matríc, ako je napr. morská voda, mlieko alebo moč. Alotaibi a spol. zaviedli relatívne rýchlu metódu extrakcie ¹²⁹I z moču. 25 g moču a 5 g H₂O₂ sa zmieša a zahrieva v autokláve. Po vychladnutí sa zmes znova mierne ohreje a pridá sa 20 mg Na₂CO₃ za účelom odstránenia zvyškového H₂O₂. Kvapalina sa okyslí s HNO₃ na pH ~ 1, pridá sa nosič NaI so známym pomerom ¹²⁹I/¹²⁷I = 1,4·10⁻¹⁴. Po premiešaní sa pomocou AgNO₃ vyzráža AgI. AgI sa premyje, vysuší, zmieša s nióbovým práškom a zlisuje do katódy²⁹.

Veľmi často sa v procese spracovania vzoriek využíva mikrovlnný rozklad. Jerše a spol. skúmali obsah jódu v rastlinách. K vysušeným a pomletým vzorkám sa pridá TMAH a voda. Táto zmes podlieha mikrovlnnému rozkladu 20 minút pri 200 °C a tlaku 40 bar. Extrakty sa potom spracovávajú obdobným vyššie popísaným spôsobom. Autori sa dopracovali k výťažku >90 % (cit.³⁰).

Zaujímavým príkladom je aj postup, ktorým Xing a spol. dokázali stanoviť dve rôzne špécie¹²⁹I (I⁻ a IO₃⁻). Po odstránení pevných nečistôt a prefiltrovaní morskej vody cez 0,45µm membránový filter sa objem rozdelí na dve časti. Jodidy sa stanovujú v objeme 0,6 dm³ a jodičnany v objeme 1,2 dm³. Stanovenie teda prebieha oddelene. Pre jodičnany je postup nasledujúci. Do prefiltrovanej morskej vody sa pridá 0,5 kBq stopovača ¹²⁵IO₃⁻, 1 mg nosiča ¹²⁷I a 0,5 cm³ 2 M NaHSO₃. Pomocou HNO₃ sa upraví pH na hodnotu 1–2. Tým by sa mali všetky špécie jódu konvertovať na jodidy. Potom sa po kvapkách pridáva 30 mg Ag⁺ za tvorby koprecipitátu AgI-AgCI-Ag₂SO₃-AgBr. Ten sa oddelí od zvyšku roztoku centrifugovaním, premyje sa HNO₃, vodou a NH₃(aq) pre odstránenie Ag₂SO₃, väčšiny AgCl a AgBr. Týmto postupom sa získa materiál vhodný pre meranie na AMS, avšak výťažok je len o niečo väčší než 80 %. Postup pre meranie jodidov je identicky až na jeden rozdiel, miesto jodičnanového stopovača sa pridá do morskej vody 0,5 kBq ¹²⁵I⁻ (cit.³¹).

4. Stanovenie ¹²⁹I urýchľovačovým hmotnostným spektrometrom

Základom merania na AMS je príprava vhodných vzoriek, ktorá je popísaná v kapitole 3. Vzorky jódu sa pripravujú vo forme tuhého jodidu strieborného, ktorý sa následne mieša väčšinou s nióbovým práškom a lisuje do titánovej alebo medenej katódy. Takto pripravené vzorky sa vkladajú do prvej časti AMS systému, iónového zdroja.

Prirodzená prchavosť jódu je relatívne vysoká. Preto je nutné zabezpečiť také podmienky odprašovania v céziovom iónovom zdroji, aby sa vnútorný priestor iónového zdroja nekontaminoval samotnou vzorkou, a aby bolo zároveň možné zmerať čo najnižší pomer ¹²⁹I/¹²⁷I. Vzorky obsahujúce napr. ¹⁰Be, ¹⁴C alebo aktinoidy sa analyzujú pri teplote cézia v rezervoári iónového zdroja \geq 140 °C. Pri meraní ¹²⁹I táto teplota nepresahuje hodnotu 100 °C. Osobitú pozornosť je potrebné venovať samotnému spôsobu prípravy vzoriek, pretože použitím nosiča ¹²⁷I sa izotopový pomer často mení, čo je pre kvantifikáciu rádiojódu nežiaduce. Po vyrazení záporne nabitých iónov jódu céznymi katiónmi zo vzorky sa tieto anióny extrahujú vo forme iónového zväzku a putujú nízkoenergetickou časťou až k urýchľovaču.

Za urýchľovačom sa získavajú rôzne nábojové stavy ¹²⁹I. Výsledný náboj závisí od urýchľovacieho napätia. Vyššie nábojové stavy sa získavajú pri vyšších hodnotách terminálneho napätia. Napríklad pri 500 kV so stripovacím plynom Ar je možné získať ióny $^{129}I^{3+}$ (s transmisiou 9 %) a $^{129}I^{4+}$ (s transmisiou 4 %) 32 . Pri 300 kV, na ktorom pracuje AMS systém MILEA, sa získavajú ióny 2+, pričom sa dosahuje transmisia >50 %, čo je oveľa viac než pri vyššom napätí^{33,34}. Tento veľký rozdiel súvisí s druhom stripovacieho plynu. He má v tomto prípade zreteľnú výhodu, pretože má vyššiu strednú energiu ionizácie plynu než Ar. Ďalším dôvodom je to, že v He dochádza aj za zvýšeného tlaku k nižším stratám iónov v dôsledku ich rozptylu mimo zväzok. To je dôsledok nižšej hmotnosti oproti napr. Ar. Nízkoenergetický AMS systém je výhodný aj preto, lebo pri nižších nábojových stavoch meraných iónov vzniká menej interferencií.

Interferencie sú dvojakého druhu, izobarické a molekulové. Izobarické interferencie sú atómové ióny, ktoré majú rovnakú atómovú hmotnosť ako ¹²⁹I. Preto nie sú systémom rozpoznateľné a výsledky sa získavajú ako

Tabuľka III Príklady interferencií pri meraní ¹²⁹In+ metódou AMS

Náboj jódu	Interferujúce ióny
(n)	
+2	$^{127}\text{IH}_{2^+}$
+3	$^{43}Ca^+, {}^{86}Sr^{2+}$
	¹²⁸ TeH ⁻
+4	$^{97}Mo^{3+}, ^{32}S^+$
	$^{63}Cu^{65}Cu^{+}H^{-}$
+5	77 Se ³⁺ , 104 Pd ⁴⁺
	77 Se ³⁺ , 104 Ru ⁴⁺
+6	$^{43}Ca^{2_+}, {}^{86}Sr^{4_+}$
	65 Cu ³⁺ , 107 Ag ⁵⁺ (alebo 108 Pd ⁵⁺ a 108 Cd ⁵⁺)
+7	$^{92}Mo^{5+}, {}^{37}Cl^{2+}$
	92 Zr ⁵⁺ , 37 Cl ²⁺

pomer hmotnosti a náboja (m/z) daných izotopov.¹²⁹I má jeden stabilný izobar, ¹²⁹Xe.¹²⁹Xe sa môže vyskytnúť v meranej vzorke ako nečistota. Nevytvára však záporne nabité ¹²⁹Xe⁻, pretože sú extrémne nestabilné. Z tohto pohľadu je teda meranie ¹²⁹I na akomkoľvek systéme AMS veľmi jednoduché. Pri meraní ¹²⁹I v nábojovom stave 2+ sa môže vyskytnúť molekulová interferencia ¹²⁷IH₂⁺. Tá však disociuje v stripovacom plyne. V nábojovom stave 3+ sa môže objaviť molekulová interferencia ¹²⁸TeH⁻. Avšak vďaka coulombickej repulzii sa nepovažuje za veľkú hrozbu pre priebeh merania. V tab. III sú uvedené izobarické a molekulové interferencie pochádzajúce z rôznych matríc vzoriek^{23,35,36}.

Požadovaný pomer *m/z* sa zo zväzku iónov jódu vyberá správnym nastavením magnetov. Cesta iónového zväzku potom končí v koncovom detektore. V prípade

Tabuľka IV Meranie ¹²⁹I na AMS s tandemovými urýchľovačmi

systému MILEA to je ionizačná komora. Základným údajom merania na AMS sú hlavne izotopové pomery, v prípade jódu je to pomer rádiojódu ¹²⁹I k stabilnému ¹²⁷I. Hodnota, ktorú možno získať na akomkoľvek zariadení AMS je pre tento pomer ¹²⁹I/¹²⁷I <10⁻¹⁰. AMS je teda relatívna metóda monitorovania, a to nielen antropogénneho jódu. Vzhľadom ku svojej vysokej citlivosti je schopná pokryť prirodzené, predjadrové úrovne ¹²⁹I/¹²⁷I = 10⁻¹⁵–10⁻¹³, vo všeobecnosti vzorky, ktoré obsahujú stopové koncentrácie ¹²⁹I (cit.^{37,38}).

Koncentrácia ¹²⁹I vo vzorke je stanovená pomocou jeho izotopového pomeru k ¹²⁷I (R_{AMS}). Keď sa ku vzorke pridáva nosič, množstvo ¹²⁷I je vo veľkom nadbytku oproti ¹²⁹I. Vtedy je pre R_{AMS} možné napísať nasledujúci vzťah:

$$R_{\rm AMS} = \frac{\frac{129}{I_{\rm s}} + \frac{129}{I_{\rm n}}}{\frac{127}{I_{\rm s}} + \frac{127}{I_{\rm n}}} \approx \frac{\frac{129}{I_{\rm s}}}{\frac{127}{I_{\rm n}}} \tag{1}$$

kde ¹²⁹ $I_{\tilde{s}}$ a ¹²⁹ I_n je množstvo ¹²⁹I v štandarde a v nosiči, ¹²⁷ $I_{\tilde{s}}$ a ¹²⁷ I_n sú množstvá ¹²⁷I v štandarde a nosiči. Nakoľko je množstvo nosiča pridaného do vzorky vždy presne známe, ¹²⁹ $I_{\tilde{s}}$ je možné stanoviť. Izotopový pomer jódu vo vzorke ($R_0 = {}^{129}I/{}^{127}I_{\tilde{s}}$ a potom vypočíta z R_{AMS} , ¹²⁷ $I_{\tilde{s}}$ a ¹²⁷ I_n nasledovne:

$$R_0 = \frac{R_{\rm AMS} \cdot {}^{127} I_n}{{}^{127} I_{\xi}} \tag{2}$$

kde $^{127}I_{s}$ je stanovené pred meraním na AMS, napr. iónovou chromatografiou³⁷.

Precíznosť meraní na AMS sa mení v závislosti od koncentrácie a/alebo typu vzorky. Relatívna odchýlka koncentrácie 129 I je 5 % a pomeru 129 I/ 127 I 3–10 % pre pár fg na 1 g vzorky pôdy³⁹. Pre vzorky vôd je to 5–12 %

Vzorka	Analyt	Terminálne napätie	Nábojový stav	Detekčný limit ¹²⁹ I/ ¹²⁷ I	Lit.
Morská voda	$^{129}\mathrm{I}/^{127}\mathrm{I}$	3,5 MV	+5	$2 \cdot 10^{-13}$	41
Štandard	$^{129}I/^{127}I$	1 MV	+3	$\sim 10^{-14}$ a	42
Štandard	^{129}I	0,5 MV	+3	0,2 fg v 1 mg ¹²⁷ I	19
Lišajník	$^{129}\mathrm{I}/^{127}\mathrm{I}$	1 MV	+3	$3 \cdot 10^{-13}$	38
Štandard	$^{129}\mathrm{I}/^{127}\mathrm{I}$	5 MV	+5	-	43
Štandard	$^{129}\mathrm{I}/^{127}\mathrm{I}$	300 kV	+2	$\sim 10^{-14}$ a	33
Plyn	$^{129}\mathrm{I}/^{127}\mathrm{I}$	3 MV	+2	$\sim 10^{-10}$ a	37
Plyn	¹²⁹ I/ ¹²⁷ I	3 MV	+4	6.10 ^{-15 a}	44
Aerosól	$^{129}\mathrm{I}/^{127}\mathrm{I}$	3 MV	+4	9,65·10 ^{-13 a}	45
Voda z JE	¹²⁹ I	1 MV	+3	$3 \cdot 10^{-13}$ a	46
Iónomenič z JE	¹²⁹ I	5 MV	+5	$2,2.10^{-14_4}$ a	47
Sediment	$^{129}\mathrm{I}/^{127}\mathrm{I}$	5 MV	+5	$6 \cdot 10^{-13}$ a	48
Štítna žľaza	$^{129}\mathrm{I}/^{127}\mathrm{I}$	3 MV	+4	9,65·10 ^{-13 a}	49

^a Slepá vzorka alebo úroveň pozadia

 (^{129}I) a 8–19 % $(^{129}I/^{127}I)^{40}.$ V tab. IV sú zoradené hodnoty pomerov $^{129}I/^{127}I$ dosiahnuté rôznymi typmi AMS.

Veľmi kritickým bodom pri meraní na zariadení AMS je správne stanovenie koncentrácií a pomerov. Na to je nutné poznať prirodzené pozadie pre daný meraný nuklid a mať k dispozícií štandard daného nuklidu, ktorého koncentrácia a pomer je známy a precízny. V minulosti bol objavený jeden prírodný materiál s veľmi nízkym obsahom 129I, ktorý je uznávanou slepou vzorkou pre meranie jódu na AMS. Čerpá sa z hlbokých soľných vrtov na severe Oklahomy v USA a bežne sa označuje ako "Woodward blank" podľa mesta, kde sa získava^{50,51}. Tento materiál sa používa ako slepá vzorka alebo sa využíva ako štandardný prídavok. V súčasnosti však výskum naznačuje, že takejto slepej vzorke by mal vyhovovať aj bežne dostupný NaI v niektorých produkčných šaržiach. Štandardný roztok jódu ¹²⁹I je relatívne dostupným materiálom v porovnaní so slepou vzorkou. Príkladom môže byť štandard NIST-SRM-4949C od Národného inštitútu pre štandardy a technológie v USA. Príprava "domáceho" štandardu je taktiež možná.

5. Záver

Rádioizotop ¹²⁹I vstupuje do globálnych cyklov jódu od atmosféry cez biosféru a hydrosféru, až do geosféry. Jeho prirodzená produkcia bola rádovo prekročená ľudskou jadrovou činnosťou a ¹²⁹I sa tak stal ďalším rádioaktívnym stopovačom prírodných procesov podobne ako ¹⁴C v bombovom píku alebo 236U a 99Tc. Jeho chemické správanie dovoľuje postihnúť omnoho širšie spektrum prírodných i antropogénnych cyklov než umožňujú posledné dva uvedené rádioizotopy a je možné ho detegovať na úrovniach izotopových pomerov až 10⁻¹⁵ v submiligramových terčových vzorkách. Relatívna jednoduchosť merania ¹²⁹I urýchľovačovou hmotnostnou spektrometriou je - mimo nutnosti prístupu k AMS - vykúpená obťažnosťou a komplikáciami pri príprave vzoriek, možnými stratami a nutnosťou zjednocovania chemických foriem jódu. Pre vhodne pripravené vzorky však AMS poskytuje bezkonkurenčnú citlivosť, a preto je nevyhnutné ďalej vyvíjať a zdokonaľovať postupy, ktorými by bolo možné stanoviť ¹²⁹I v širšom spektre vzoriek na žiadúcich ultrastopových úrovniach.

Zoznam skratiek

AMS	Accelerator Mass Spectrometry, urýchľova-
	čová hmotnostná spektrometria
ICP-MS	Inductively Coupled Plasma Mass Spectro-
	metry, hmotnostná spektrometria
	s indukčne viazanou plazmou
LSC	Liquid Scintillation Counting, kvapalný scin-
	tilačný počítač
MILEA	Multi-Isotope Low-Energy Accelerator Mass
	Spectrometry, multi izotopová
	nízkoenergetická urýchľovačová spektrometria
RNAA	rádiochemická neutrónová aktivačná analýza

TMAH tetramethylammonium hydroxide, hydroxid tetrametylamónny

Vypracované s finančnou podporou Ministerstva školství, mládeže a tělovýchovy České republiky, v projektu OP VVV č. CZ.02.1.01/0.0/0.0/16_019/0000728 – Výzkum ultrastopových izotopů a jejich využití v sociálních a environmentálních vědách urychlovačovou hmotnostní spektrometrií (RAMSES).

LITERATÚRA

- 1. https://www.mindat.org/, stiahnuté 23. 2. 2022.
- 2. Hu Q., Zhao P., Moran J.: J. Contam. Hydrol. 78, 185 (2005).
- Takeno N.: Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No. 419, 2005.
- Santschi P. H., Xu C., Zhang S., Schwehr K. A., Grandbois R., Kaplan D. I., Yeager C. M.: Appl. Geochem. 85, 121 (2017).
- NuDat 3.0. National Nuclear Data Center at Brookhaven National Laboratory. Dostupné on-line: https:// www.nndc.bnl.gov/nudat3/, stiahnuté 23. 2. 2022.
- 6. Cardis E., Howe G., Ron E., Bebeshko V.: J. Radiat. Prot. 26, 127 (2006).
- Enright H. A., Malfatti M. A., Zimmermann M., Ognibene T., Henderson P., Turteltaub K. W.: Chem. Res. Toxicol. 29, 1976 (2016).
- Kutchera W.: Nucl. Instrum. Methods Phys. Res., Sect. B 268, 693 (2010).
- Tuniz C., Bird J. R., Fink D., Herzog G. F.: Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. CRC Press, Boca Raton 1998.
- Machado A., Lima L., Mesquita R. B. R, Bordalo A. A.: Clin. Chem. Lab. Med. 55, e206 (2017).
- ČSN EN 5111 (560633) Potraviny Stanovení stopových prvků – Stanovení jódu metodou ICP-MS (hmotnostní spektrometrie s indukčně vázaným plazmatem).
- Zhang S., Schwehr K. A., Ho Y.-F., Xu C., Roberts K. A., Kaplan D. I., Brinkmeyer R., Yeager C. M., Santschi P. H.: Environ. Sci. Technol. 44, 9042-8 (2010).
- 13. Hou X., Roos P.: Anal. Chim. Acta. 608, 105 (2008).
- Barker E., Masson M., Bouisset P., Cariou N., Germain P., Siclet F.: Radioprotection, Suppl. 1. 40, S581 (2008).
- Hou X., Hansen V., Aldahan A., Possnert G., Lind O. C., Lujaniene G.: Anal. Chim. Acta 632, 181 (2009).
- Xiaolin H., Yingkun H.: J. Anal. Sci. Technol. 3, 135 (2012).
- Jie G., Ming H., Qingzhang Z., Pan H., Yijun P., Yiwen B., Qubo Y., Kangning L., Shengyong S., Yueming H., Shaoyong W.: Nucl. Instrum. Methods Phys. Res., Sect. B 465, 31 (2020).
- Jull A., Burr G.: Earth Planet. Sci. Lett. 243, 305 (2006).
- Alfimov V., Synal H.-A.: Nucl. Instrum. Methods Phys. Res., Sect. B 268, 769 (2010).

M. Daňo a spol.

- Fittoussi C., Raisbeck G. M., Hubert P.: Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1265 (2010).
- Steinhauser G.: Environ. Sci. Poullut. Res. 26, 16901 (2019).
- Duborská E., Bujdoš M., Urík M., Matúš P.: CATENA 195, 104749 (2021).
- Kim J., Kim J.-Y., Bae S.-E., Song K., Park J.-H.: Microchem. J. 169, 106476 (2021).
- He Y., Buch A., Szopa C., Williams A. J., Millan M., Guzman M., Freissinet C., Malespin C., Galvin D. P., Eigenbrode J. L., Coscia D., Teinturier S., Iu P., Cabane M., Mahaffy P. R.: TrAC, Trends Anal. Chem. 127, 115896 (2020).
- 25. Adamic M. L., Baeck D. L., Eisenmenger J. G., Fox R. V., Hahn P. A., Jenson D. D., Lister T. E., Olson J. E., Watrous M. G.: *Transition of Iodine Analysis to Accelerator Mass Spectrometry. IN13-AMS255-3TE.* INL, U.S. Department of Energy Office of DNN R&D Under DOE Idaho Operations Office, Idaho, 2015.
- Yamada H., Kiriyama T., Onagawa Y., Hiamori I., Miyazaki C., Yonebayashi K.: Soil. Sci. Plant. Nutr. 45, 563 (1999).
- Suzuki T., Shigeru B., Kitamura T., Kabuto S., Isogai K., Amano H.: Nucl. Instrum. Methods Phys. Res., Sect. B 259, 370 (2007).
- Wang Y., Hou X., Fan Y., Zhang L., Liu Q.: J. Radioanal. Nucl. Chem. 326, 1456 (2020).
- Alotaibi F. A., Cornett R. J., Herod M. N.: J. Envrion. Radioact. 228, 106528 (2021).
- Jerše A., Jaćimović R., Kacjan Maršić N., Germ M., Šircelj H., Stibilj V.: Microchem. J. 137, 355 (2018).
- Xing S., Hou X., Ala A., Göran P.: Anal. Chem. 85, 3715 (2013).
- Vockenhuber C., Casacuberta N., Christl M., Synal H.-A.: Nucl. Instrum. Methods Phys. Res., Sect. B 361, 445 (2015).
- Maxeiner S., Synal H.-A., Christl M., Suter M., Müller A., Vockenhuber C.: Nucl. Instrum. Methods Phys. Res., Sect. B 439, 84 (2019).
- Christl M., Vockenhuber C., Kubik P.W., Wacker L., Lachner J., Alfimov V., Synal H.-A.: Nucl. Instrum. Methods Phys. Res., Sect. B 294, 29 (2013).
- 35. Xu S., Freeman P. H. T. F.: Nucl. Instrum. Methods Phys. Res., Sect. B 438, 96 (2019).
- Liu Q., Hou X., Zhou W., Fu Y.: J. Am. Soc. Spectrom. 26, 725 (2015).
- López-Gutiérrez J. M., García-León M., Schanbel C., Schmidt A., Michel R., Synal H.-A., Suter M.: Appl. Radiat. Isot. 51, 315 (1999).
- Gómez-Guzmán J. M., López-Gutiérrez J. M., Pinto-Gómez A. R., Holm E.: Appl. Radiat. Isot. 70, 263 (2012).
- Enachescu M., Stan-Sion C., Petre A. R., Dorobantu I., Neagu-Harangus L.: Nucl. Instrum. Methods Phys. Res., Sect. B 437, 75 (2018).
- Jie G., Ming H., Qingzhang Z., Pan H., Yijun P., Yiwen B., Qubo Y., Kangning L., Shengyong S.,

Yueming H., Shaoyong W.: Nucl. Instrum. Methods. Phys. Res., Sect. B 465, 31 (2020).

- 41. Buraglio N., Aldahan A., Possnert G.: Nucl. Instrum. Methods Phys. Res., Sect. B *161*, 240 (2000).
- Zhao X. L., Litherland A. E., Kieser W. E., Soto C.: Nucl. Instrum. Methods Phys. Res., Sect. B 27, 398 (2008).
- 43. Sasa K., Takahashi K., Matsunaka T., Hosoya S., Mtsumura M., Shen H., Honda M., Takano K., Ochiai Y., Sakaguchi A., Sueki K., Stodola M., Sundquist M.: Nucl. Instrum. Methods Phys. Res., Sect. B 437, 98 (2011).
- 44. Francisco B. B. A., Bergl R., Zhao X. L., Cornett R. J., Kieser W. E.: Nucl. Instrum. Methods Phys. Res., Sect. B 466, 47 (2020).
- Jabbar T., Steier P., Wallner G., Kandler N., Katzlberger C.: Nucl. Instrum. Methods Phys. Res., Sect. B 269, 3183 (2011).
- López-Gutiérrez J. M., Gómez-Guzmán J. M., Chamizo E., Peruchena J. I., García-León M.: Nucl. Instrum. Methods Phys. Res., Sect. B 294, 647 (2013).
- Nottoli E., Bienvenu P., Labet A., Bourlès D., Arnold M., Bertaux M.: Appl. Radiat. Isot. 68, 90 (2014).
- Englund E., Aldahan A., Possnert G., Alfimov V.: Nucl. Instrum. Methods Phys. Res., Sect. B 259, 365 (2007).
- Negri A. E., Fernández Niello J. O., Wallner A., Arazi A., Steier P.: Sci. Total Environ. 430, 231 (2012).
- 50. https://www.deepwaterchemicals.com/products/, stiahnuté 2. 8. 2022.
- Povinec P. P., Masarik J., Ješkovský M., Kaizer J., Šivo A., Breier R., Pánik J., Staníček J., Richtáriková M., Zahoran M., Zeman J.: Nucl. Instrum. Methods Phys. Res., Sect. B 361, 87 (2015).

M. Daňo^a, M. Němec^a, M. Mindová^a, J. John^a, E. Viglašová^b, and B. Czíferi^b (^a Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic; ^b Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia): Methods and Application of ¹²⁹I Determination by Accelerator Mass Spectrometry

The main goal of this paper is to provide a brief overview of the use and determination of ¹²⁹I by means of the accelerator mass spectrometry. Although AMS is currently the most sensitive method for the determination of ¹²⁹I, the preparation of target samples plays a key role in this method. The most commonly used methods are those in which iodine is lost due to elevated temperatures. Therefore, there is still room for effort to find the most suitable methods of preparation of iodine samples for measurement by the AMS method.

Keywords: iodine determination, accelerator mass spectrometry, ¹²⁹I, separation, natural environment

M. Daňo a spol.

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds – Operational Program Research, Development and Education) in the frames of the project "RAMSES – Ultratrace isotope research in social and environmental studies using accelerator mass spectrometry" (Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000728).