Pawel Bigos, Xiangsha Du, Duanduan Han, Robert Birdsall, Andrea Hoehnel, Karen Nyholm

NTRODUCTION

In biopharmaceutical analysis, undesired secondary analyte/surface interactions have hindered performance in HPLC. Analytes that contain electron rich functional groups are susceptible to adsorb onto surfaces along the stainless-steel flow path causing reduced resolution and recovified with a chemically resistant hybrid organic inorganic barrier called MaxPeak ${ }^{\text {TM }}$ High Performance Surfaces (HPS) Technology This technology was then used in the construction of a bio-inert system called the Alliance ${ }^{\text {TM }}$ iS Bio HPLC System.

In this poster, the Alliance is Bio HPLC System was evaluated by analysing oligonucleotides, monoclonal antibodies (mAbs), and glucagon-like-peptides (GLP-1) and compared to a legacy HPLC system for improved resolution and recovery

METHODS

Established methods that were previously analyzed on legacy HPLC platforms and columns were scaled and transferred to the Alliance iS Bio HPLC System. Ion-pairing reversed phase chromatography (IPRPLC), size exclusion chromatograph (SEC), and RPLC were used as the prevailing techniques for analyzing the analytes on both systems.

Oligonucleotide Analysis ${ }^{1}$

Waters MassPREP ${ }^{\text {TM }}$ Oligonucleotide Standard (OST) containing 15-35 mer oligodeoxythymidines (4 pmol/ $\mu \mathrm{L}$) and GEM91, a 25 mer fully thiolated phosphorothioate oligonucleotide $(0.5 \mathrm{mg} / \mathrm{mL})$ were injected onto both systems.

Legacy HPLC System Method Conditions:
Column: \quad XBridge ${ }^{\text {TM }} \mathrm{BEH}^{\text {TM }} \mathrm{C}_{18}$ Column $5 \mu \mathrm{~m}, 130 \AA$, $4.6 \times 100 \mathrm{~mm}$ ($\mathrm{p} / \mathrm{n}: 186003115$) XBridge BEH C ${ }_{18}$ Column $2.5 \mu \mathrm{~m}, 130 \AA$, $4.6 \times 100 \mathrm{~mm}(\mathrm{p} / \mathrm{n}: 186006039)$
Alliance is Bio HPLC System Method Conditions:
Column: XBridge Premier Oligonucleotide BEH C Column $2.5 \mu \mathrm{~m}, 130 \AA, 4.6 \times 100 \mathrm{~mm}$ (p/n:186009902) $6 \times 100 \mathrm{~mm}$ (p/n: 186003115) $5 \mathrm{~m}, 130 \AA$ $4.6 \times 100 \mathrm{~mm}$ ($\mathrm{p} / \mathrm{n}: 186003115$)

Shared Conditions
25 mM Hexylammonium acetate (HAA) in
Mobile Phase B: $\quad 25 \mathrm{mM}$ HAA in water/acetonitrile (ACN)
Mobile Phase C. \quad.
Mobil Phase D:
Mobile Phase
Injection volume
Column temp.
Wavelength:
MassPREP OST: $\quad 1.73 \% \mathrm{~B} / \mathrm{min}$ gradient
$0.5 \% \mathrm{~B} / \mathrm{min}$ gradient

Monoclonal Antibody Analysis ${ }^{2}$

USP mAb reference standards were injected at a concentration of 10 $\mathrm{mg} / \mathrm{mL}$ in formulation buffer onto both systems

Legacy HPLC System Method Conditions: ${ }^{3}$

Column: \quad BioSuite ${ }^{\text {TM }}$ Diol (OH) Column, 250A μ, $7.8 \mathrm{~mm} \times 300 \mathrm{~mm}$ (p / n : 186002165) Flow Rate. $\quad 0.500 \mathrm{~mL} / \mathrm{min}$
Run Time: $\quad 30$ minutes, isocratic
Alliance iS Bio HPLC System Method Conditions
Column: XBridge Premier Protein SEC Column 250
Injection volume: $\quad-3.5 \mu \mathrm{~m}, 78 \times 150 \mathrm{~mm}$ ($\mathrm{p} / \mathrm{n}: 186009961$)
$3.5 \mu \mathrm{~L}$
Run Time:
7.5 minutes, isocratic

Shared Conditions: ${ }^{3}$

Mobile Phase: $\quad 0.20 \mathrm{M}$ potassium phosphate and 0.25 M
Column temp.
potassium chloride, pH 6.2
Wavelength:
280 nm

GLP-1 Analysis

Dulaglutide and glucagon stock were prepared with DMSO at $1 \mathrm{mg} / \mathrm{mL}$ Liraglutide and tirzepatide stock were prepared with DMSO at $0.5 \mathrm{mg} /$ mL . Exenatide and semaglutide stock were prepared with 10 mM ammonium formate buffer, pH 8.5 at $0.5 \mathrm{mg} / \mathrm{mL}$. The GLP-1 pane 0.5% trilus pre 1% for

Legacy HPLC System Method Conditions
Column: \quad XSelect ${ }^{\text {TM }}$ Peptide CSH $^{\text {TM }} \mathrm{C}_{18}$ Column 130 \AA
$2.5 \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}(\mathrm{p} / \mathrm{n} \cdot 186007038$)
Alliance iS Bio HPLC System Method Conditions:
Column: XSelect Premier Peptide CSH C ${ }_{18}$ Column 130 \AA, $2.5 \mu \mathrm{~m}, 4.6 \times 150 \mathrm{~mm}(\mathrm{p} / \mathrm{n}: 186009909)$

Shared Conditions:

Mobile Phase A:
Column temp.:
Wavelength:
Injection volume
Flow Rate
$.1 \%$ formic acid in ACN
$60^{\circ} \mathrm{C}$
214 nm
$10 \mu \mathrm{~L}$
$0.960 \mathrm{~mL} / \mathrm{min}$
$2.725 \% \mathrm{ACN} / \mathrm{m}$

RESULTS AND DISCUSSION

Figure 2: GEM91 was analyzed to further investigate the performance differences across systems. Despite its refinement as a drug substance, GEM91 contains impurities that necessitate monitoring. Utilizing the $5 \mu \mathrm{~m}$ XBridge BEH C_{18} Column on both systems, the Alliance iS Bio HPLC System showed an $\sim 40 \%$ increase in the signal-to-noise ratio for the trace impurities versus the legacy HPLC system. This improvement translates to enhanced recovery and increased accuracy when analyzing critical species for novel therapies.

CONCLUSION

- The biocompatible and bio-inert construction of the Alliance iS Bio HPLC System is well suited for biotherapeutic analysis of oligonucleotides, monoclonal antibodies, and small biologics such as GLP-1 analytes.
- The Alliance iS Bio HPLC System demonstrated increased resolution and recovery of biotherapeutics while delivering consistent performance with improved precision.
- The larger mixing volume enhances low-level impurities for improved accuracy in detection and integration.

References

Du X, Birdsall RE, Bigos P. Han D. Nyholm K. Deploying the Alliance ${ }^{\text {Tw }}$ is Bio HPLC Syster as a modern HPLC Cor biopharmaceel 2. Bispos P PBirdsall RE, Nyholm K. Modernizing Compendial SEC Methods for Bioth 200008290EN.

Figure 4: The larger mixing volume of the Alliance is Bio HPLC System produces chromatograms with lower baseline noise and improved peak shape for the GLP-1 peptides when compared to the legacy HPLC system. This enables improved accuracy in the detection and integration of low abundant impurities and main peaks

