SHIMADZU

Automatic, simultaneous and rapid analysis of pesticides in surface and underground water by online SPE and UHPLC-MS/MS.

Uwe Oppermann¹, Doriane Toinon², Alban Huteau², 1. Shimadzu Europa GmbH, 47269 Duisburg, Germany 2. SHIMADZU France, 77448 Marne La Vallée cedex 2, France.

Overview

We here report the quantification of 272 pesticides in water matrix. This method use a SPE-UHPLC-MS/MS from Shimadzu. The performance of the method was evaluated on surface, underground and drinking water. Excellent results were showed independently of the matrix. The obtained LLOQs fits the requirements of the EU guidelines and could also be used to get an agreement in France. Because of its sensitivity, its automation and its adaptability to different waters, this method saves a tremendous amount of time.

1. Introduction

Pesticides are used for crops protection but their intensive use and their slow natural degradation makes them serious contaminants for surface water and underground water. This exposition can be more or less dangerous for animals, humans and ecosystems, with an immediate or long-term impact. Some studies revealed that these compounds cause health problems such as alterations of the nervous system, immune system diseases, fertility and development problems as well as cancer.

Reference separation techniques require tedious pretreatment protocol to reach thresholds set by environmental standards. Shimadzu proposes a new sensitive online SPE-LC-MS/MS method for simultaneous high sensitive quantification of 272 pesticides in surface water and groundwater.

2. Method

To perform this method, we use high quality solvents and reagent for mobile phase (LCMS grade BiosolveTM).

Two surface waters and one groundwater were spiked with standard pesticides purchased from Sigma. Six calibration levels at 1, 10, 20, 50, 100 and 500 ng/L were prepared 3 times in each matrix.

Figure 1. Schema SPE on-line UHPLC-MS/MS (Number of patent : WO 2016/098169 A1).

System: Shimadzu Nexera X2 Column SPE: Mayi-ODS C18 Column LC: C18AQ CS Interchim 2,6µm 150*3 mm A/B (SPE): water/acetonitrile + 0.002% formic acid + 2mM ammonium formate A: water + 0.002% formic acid + 2mM ammonium formate B: 50/50 acetonitrile/Methanol + 0.002% formic acid + 2mM ammonium formate LC flow: 0.7 mL/min SPE elution flow: 0.2 mL/min Oven temperature: 40°C Injection volume: 1000 µL

2-2. MS conditions : LCMS-8050

System: Shimadzu TQ LCMS-8050 ESI ionization mode: positive and negative Dwell time: 4 to 199 msec to obtain at least 15 points per peak

Nebulizing gas flow: 2,8 L/min Heating gas flow: 10 L/min Drying gas flow: 10 L/min

2-3. Typical chromatogram

The different levels prepared on three waters were analysed. Their injection allows to obtain the following chromatogram (Figure 2.)

2-1. SPE-UHPLC conditions : Nexera X2

Desolvatation line: 150°C Heat block temperature: 300°C Interface temperature: 350°C

Figure 2. Chromatogram ground water spiked at 100 ng/L

3. Results

One of the previous matrix spiked at different levels was selected to draw the calibration curve. The other doped water samples were used as controls. The 23 different isotopic standards were added to perform internal calibration. To overcome the matrix effect, ISTD were choose to cover the main families of pesticides: phenylureas, triazines, carbamates, sulphonylureas, organophosphorus compounds ...

3-1. Calibration curves

The limits of quantification were established for each compound by a signal to noise ratio (S/N) greater than 10. The compounds are classified in the following table according to their limits of quantification: 1, 10 and 25 ng/L. The obtained LLOQs fits the requirements of EU and French guidelines.

			Compounds wit	n LOQ at Thg/L		
4MBC	chlorfluazon		uron	ioxynil	oxamyl	simazine
cetamiprid chloridazon		ethiotencarb		IPPMU	oxasulfuron	simazine hydroxy
acetochlor chlorsulfuron		ethiprol	e .	IPPU	oxazepam	simetryn
acide niflumique chlortoluron		fenbuconazole		iprovalicarb	oxydemeton-methyl	spirotetramat
alachlore clethodim		fenobuc	carb	isoprothiolane	paclobutrazol	sulfometuron-methyl
ametryn	coumafene	fenothiocarbe		isoproturon	penconazole	sulfosulfuron
amidosulfuron	coumatetralyl	fenpyroximate		isoxaben	penoxsulam	tebuconazole
aminocarb	cyanazine	fensulfothion		lufenuron	phosphamidon	tebufenoside
atenolol	cybutrine	fenuron		malaoxon	pinoxaden	tebutam
atrazine	cycloxydim	fipronil sulfone		malathion	pirimicarb	tebuthiuron
atrazine desethyl	cyflufenamid	fluazinam		mandipropamid	pirimicarb desmethyl	teflubenzuron
atrazine-OH	Cyproconazole	flufenacet		mecarbam	pirimicarb II	tepraloxydim
azaconazole	DCPMU	fluometuron		mefluidide	prochloraz	terbumeton
azamethiphos desmetryn		fluopicolide		mercaptodimethur	progesterone	terbumeton desethyl
azimsulfuron dichlorophen		fluoxastrobin		metabenzthiazuron	promecarb	terbuthylazine
azinphos ethyl dicrotophos		flupyrsulfuron methyl		metalaxyl	prometryn	terbuthylazine desethy
azinphos methyl	diethofencarb	fluridon	e	metazachlor	propachlore	terbuthylazine hydroxy
azoxystrobin difenacoum		flurtamone		metconazole	propazine	tetraconazole
pensulfuron methyl difenoconazole		flusilazo	ole	methomyl	propiconazole	thiabendazole
benthiavalicarb isopropyl difethialone		fluxapyroxad		metobromuron	propoxur	thiacloprid
bisphenol S diisobutylohtalate		foramsulfuron		metolachlore	propoxycarbazone	thiazafluron
buturon dimetachlore		formetanate		metosulam	propyl paraben	thiobencarb
cafeine dimethenamic		fosthiazate		metoxuron	proguinazid	thiophanate methyl
carbamazenime	dimethomorph	fuberidazole		metribuzin	prosulfuron	triadimefon
carbamazenine enovy	le dimetilan	halosulfuron methyl		metropolol	nvrazonhos	triazamate
carbaryl	dimoxystrohin	hexaconazole		metsulfuron methyl	nvrifenox	tribenuron methyl
arbendazim diniconazole		hexaflumuron		monolinuron	nvrimethanil	trietazine
arbetamide dinoseb		hovazin	one	monuron	nyroysulam	
carbofuran	dinoterb	hexythiazov		myclobutanil	guizalofon ethyl	triflumizale
carbofuran 2 hudrowy	diurop	bydrova	uronazino	neburon	rimsulfuron	trimetoprimo
carboruran 5 nyuroxy		imazapyr		nicosulfuron	rotonono	trinevanac athul
cal DUXIII		imazapyr		orufaça	cobutbulazina	
liorantraniliprole epoxiconazole		imidadu	un aprid		sebutnyiazine	vamidathica
				jory∠aiiii	31441011	
			Compounds with	LOQ at 10ng/L		
245T Fenoprop	cyprosulfamide	fe	enarimol	imazamox	metazachlore oa	quizalofop
aldicarbe	Cyromazine	fe	enoxycarb	imazofulfuron	methidathion	roxythromycine
atrazine desisopropyl	desethyl-Terbutylazine 2	2-OH fl	azasulfuron	iodosulfuron methyl	oxadixyl	tembotrione
pentazone	desmedipham	fl	orasulam	isoprocarb	paraoxon	testosterone
penzafibrate	dia2hydroxy	fl	ufenacet oa	isoxadifen ethyl	phenmedipham	thiencarbazone methyl
prodifacoum	dichlorprop-P	fl	uroxypyr	lorazepam	phoxim	thiodicarb
promadiolone	diclofenac	fo	omesafen	MCPA	propamocarb	tolytriazole
outyl paraben	dimetachlore oa	fo	orchlorfenuron	MCPP	propanolol	triasulfuron
	epitestosterone	h	aloxyfop	medroxyprogesterone	propyzamide	triazoxide
chloroxuron	ethoxysulfuron	h	aloxyfop methyl	mesosulfuron methyl	prothioconazole	triclopyr
chloroxuron clofentezine	rsulon ethyl paraben			,		
chloroxuron clofentezine clorsulon	ethyl paraben	ir	mazalil	metamitron	pymetrozine	trietazine desethvl

2,4-D

Table 1. Limit of quantification in ng/L for each compound.

Compounds with LOQ at 25ng/L									
dea 2 HYDROXY	fluquinconazole	linuron	titrosulfuron	triflumuron					

3-2. Performance Evaluation

Repeatability is determined at low level of concentration for each water with 3 injections. Whatever the water matrix, the repeatability is less than 15% for all the 272 targeted compounds.

The obtained results show that the calibration standards and the controls were analysed with an accuracy between 85 and 115%.

4. Conclusion

quantification are ranging from environment.

Figure 3. Example of chromatogram at the LLOQ.

- Shimadzu offers a unique, automated and sensitive method to quantify a large number of pesticides in water. Limits of
- 1 to 25 ng/L with 1 mL injection of sample. The accuracy is between 85-115% and the repeatability is less than 15% for the full list.
- Finally, this method is consistent with the actual normative
- Shimadzu solution with high sensitivity, automation and water matrix adaptability is the most powerful and time saving procedure in harmony with the real customer needs.