

# **Preparative Gel Permeation Chromatography - Loading**

## **Technical Overview**

#### Introduction

Loading in preparative gel permeation chromatography (GPC) is dependent on molecular weight and can be much greater for low Mw materials than for polymers. In any case, there should be at least 10 times scale up from analytical to preparative GPC. For very low molecular weight materials such as epoxy resins, the loading can be significantly increased, as shown in Figure 1.

### Conditions

| Column    | 2 × Agilent PLgel 10 µm 100Å, 25 × 300 mm (p/n PL1210-6120)                                 |
|-----------|---------------------------------------------------------------------------------------------|
| Eluent    | THF                                                                                         |
| Flow rate | 9.0 mL/min                                                                                  |
| Loading   | Analytical 5 mg/mL, 1 mL (5 mg on-column)<br>Preparative 100 mg/mL, 3 mL (300 mg on-column) |
| Detector  | RI                                                                                          |
| System    | Agilent 1260 Infinity GPC-SEC Analysis System                                               |







Figure 1. Comparison of analytical (left) and preparative (right) loadings in the quantification of four epoxy resin components on an Agilent PLgel 10 μm two-column set.

### **GPC/SEC Columns and Calibrants from Agilent**

Agilent offers a comprehensive portfolio of GPC/SEC columns and calibrants for high-performance separations based on molecular size in solution. Agilent delivers leading solutions for characterizing and separating polymers by GPC/SEC, and manufactures all components for accurate polymer analysis.

Look at the Agilent Literature Library on www.agilent.com/chem/gpc-sec for a comprehensive range of application notes and technical overviews to help you get the best from your Agilent GPC/SEC columns and instruments.

#### www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2015 Printed in the USA April 30, 2015 5990-8426EN



### **Agilent Technologies**