

Reaction data for 70 elements using O_2 , NH_3 and H_2 gases with the Agilent 8800 Triple Quadrupole ICP-MS

Technical note

Authors

Naoki Sugiyama and Kazumi Nakano

Agilent Technologies, Japan

Introduction

Currently, methods based on Collision/Reaction Cell (CRC) technology are the most commonly used approach to resolve spectral interferences in ICP-MS. Collision mode uses a chemically inert gas, usually helium (He), to discriminate an analyte ion from any interfering polyatomic ions on the basis of Kinetic Energy Discrimination (KED). KED is effective for all polyatomic ion interferences and rarely requires optimization or customization for particular interferences or sample types, so collision mode using He is the most widely applicable approach for resolving interferences in elemental analysis by ICP-MS. The alternative approach is reaction mode, which relies on a chemical reaction taking place between the interfering ion (or the analyte) and the reactive cell gas in the CRC to resolve a specific interference.

Various reactive gases are used in reaction cell mode including hydrogen (H₂), oxygen (O₂), ammonia (NH₂), methane (CH₄), nitrous oxide (N₂O), carbon dioxide (CO₂) etc, with the choice of gas depending on the individual interference that needs to be addressed. As reactions occur very quickly in the cell (often proceeding with the first collision between the ion and reaction gas molecule), a reaction gas may be more effective than a collision gas for the removal of a given interference. As a result, reaction mode is often used to remove the most intense plasma-based interferences, such as $^{40}\text{Ar}^{+}\text{on}~^{40}\text{Ca}^{+},~^{40}\text{Ar}^{16}\text{O}^{+}$ on $^{56}\text{Fe}^{+},$ and $^{40}\text{Ar}_{2}^{+}$ on $^{80}\text{Se}^{+},$ when ultra-trace level analysis is required, for example in high purity semiconductor reagents. However, conventional quadrupole ICP-MS (ICP-QMS) has been unable to utilize the full potential of reaction mode for more complex or variable samples, because the reaction gas will also react with matrix elements, other analytes, and polyatomic species, resulting in the formation of new and unwanted interferences, which often leads to inaccurate and inconsistent results. For this reason, the application of reactive gases with ICP-QMS has been limited to the determination of a small number of analytes with predictable and consistent interferences in simple, well characterized matrices.

To meet the growing demand from industry for more reliable determination of a wider range of elements at lower concentrations and in a greater variety of matrices, a new type of ICP-MS, a triple quadruple ICP-MS (ICP-QQQ) has been developed. The Agilent 8800 ICP-QQQ realizes the full potential of reaction chemistry in ICP-MS, by using MS/MS mode to control the reaction chemistry, eliminating the errors and variability of reaction cell operation in ICP-QMS. This enables the Agilent 8800 ICP-QQQ to remove interferences far more effectively, offering significantly improved detection limits and much more consistent reaction mode performance than conventional quadrupole ICP-MS. In MS/MS mode, both quadrupoles are operated as mass filters (unit mass resolution), with the first quadruple (Q1, positioned in front of the cell) controlling which ions enter the CRC and take part in the reactions. This ensures that the chemical reactions

in the cell are consistent and predictable even when the sample composition is variable, allowing the operator to use reaction chemistry to achieve much more reliable results and lower detection limits than is possible when the same reaction chemistry is used with ICP-QMS.

The MS/MS configuration of ICP-QQQ also simplifies reaction mode method development by eliminating the interference- or analyte/isotope-specific customization of cell conditions that is often required when using reactive cell gases with ICP-QMS.

Information available in the literature relating to reaction cell technology [1, 2, 3] and thermochemical reaction data [4, 5] can be used as a reference to aid development of reaction cell methods. In this technical note, specific guidance on the important tuning parameters and some fundamental reaction data is provided to guide method development when using an 8800 ICP-QQQ in reaction mode.

Reaction cell methods

On-mass mode and mass-shift mode

There are two distinct reaction cell modes of operation for the 8800 ICP-QQQ: on-mass mode and mass-shift mode.

On-mass mode detects the analyte ion at its true isotope mass e.g., ${}^{51}V^+$ would be detected at m/z 51. This method is used when the analyte ion is relatively unreactive with the chosen cell gas, while the interfering ion reacts efficiently with the cell gas. The interfering ion is therefore removed from the mass of the analyte ion, either by being converted to a neutral species, or by forming a reaction product ion at a new mass away from the analyte ion.

By contrast, mass-shift mode detects the analyte ion as a reaction product ion at the product ion mass. For example, using O_2 as the cell gas, ⁵¹V⁺ would be detected as VO⁺ at m/z 67. This method is used when the analyte ion reacts efficiently with the cell gas to form a new reaction product ion, while the interfering ion reacts slowly or not at all with the cell gas, so does not contribute significantly to the signal at the new mass of the analyte product ion. Both methods are illustrated schematically in Figure 1 using the determination of vanadium in a chlorine matrix as an example.

Evaluation of different reaction gases

The three reaction gases that are most commonly used with the Agilent 8800 ICP-QQQ are O_2 , NH₃ (used as a mixture of 10% NH₃ in He), and H₂. As the characteristics of the three gases differ, the reaction of 70 elements with these gases was investigated.

 H_2 reacts with argide ions (ArM⁺) at a relatively fast rate compared to its reaction rate with several interfered elements. It is therefore an effective gas to remove argide-interferences such as ⁴⁰Ar⁺ on ⁴⁰Ca, ³⁸ArH⁺ on ³⁹K⁺, ⁴⁰Ar¹²C⁺ on ⁵²Cr⁺, ⁴⁰Ar⁴⁰Ar⁺ on ⁸⁰Se⁺, allowing measurement of the analyte ions at their original mass using on-mass mode. In addition, some elements that form MH_n⁺ product ions can be measured with H₂ cell gas using mass-shift mode. For example phosphorus (P) can be detected as PH₄⁺ to avoid the interference from ³⁰SiH⁺ [6] at *m*/*z* 31. Likewise, ³⁵Cl⁺ can be measured as ³⁵ClH₂⁺ to avoid interference by ¹⁶O¹⁸OH⁺ at *m*/*z* 35 [7].

 O_2 is often used in mass-shift methods to "move" the target analyte from its elemental ion mass to its oxide product ion (MO⁺) mass, by setting O2 to 16 amu higher

than Q1. For example, sulfur (S) analyte ions react with O_2 cell gas, so O_2 mass shift mode can be used to move ${}^{32}S^+$ to its product ion ${}^{32}S^{16}O^+$ at m/z 48. Since O_2^+ doesn't react with O_2 cell gas to form O_3^+ , this mass shift mode can be used to avoid the intense interference from O_2^+ on ${}^{32}S$ at its original elemental ion mass of m/z 32.

NH₃ (Agilent 8800 ICP-QQQ uses a mix of NH₃ in He) is highly reactive due to its lone electron pair. It is commonly used as a cell gas in both on-mass mode and mass-shift mode depending on the interference to be resolved. Titanium (Ti) suffers a severe interference from S-based polyatomic ions. To avoid these interferences, NH₃ is used to convert Ti⁺ to an ammonium cluster product ion, usually Ti(NH₃)₆⁺. Using this approach, Ti can be measured at low levels in samples with a matrix containing a large amount of S and Ca [8].

Experimental

An Agilent 8800 Triple Quadrupole ICP-MS (option #100) including an Octopole Reaction System (ORS³) cell was used. The standard 8800 ICP-QQQ configuration features Ni interface cones, x-lens and a sample introduction system consisting of a MicroMist glass concentric nebulizer, a Peltier-cooled quartz double-pass Scott-type spray chamber, and a quartz torch with 2.5 mm injector.

Figure 1. On-mass and mass-shift methods for vanadium measurement in a chlorine matrix: ${}^{35}C1^{16}O^+$ interferes with ${}^{51}V^+$. In on-mass mode (upper), the interfering ion CIO⁺ reacts with NH₃ to form neutral CIO (no-charge). CIO is removed while the V⁺ analyte ion passes to the detector. In mass-shift mode (lower), the analyte ion V⁺ reacts with 0, to form the product ion VO⁺ which is detected at m/z 67. The interfering ion CIO⁺ remains at m/z 51 and is rejected by Q2.

The performance of MS/MS mode was investigated for 3 different reaction gases, O_2 , NH₃ and H₂. Soft extraction lens tune (Ex1 = 0 V, Ex2 = -180 V, Omega Bias = -80 V and Omega Lens = +10 V) was applied. The preset plasma condition "low matrix" was used throughout the study, providing robust plasma conditions with a CeO⁺/ Ce⁺ ratio of < 1 %.

Among the various operational settings of the ICP-000, two key tuning parameters affect reaction efficiency: "octopole bias" and "cell gas flow rate". Octopole bias determines an ion's kinetic energy before any reaction occurs in the cell or, if the ion is unreactive with the cell gas, its ion kinetic energy after undergoing a series of collisions in the cell. Cell gas flow rate affects cell gas density, i.e., the probability of an ion experiencing a (reactive) collision with the cell gas, or the number of collisions for an unreactive ion. In this study, these settings were optimized in each cell gas mode as follows: no gas tune was optimized for maximum counts of Co+; H₂ tune was optimized for maximum counts of PH⁺, 0, tune was optimized for maximum counts of SeO⁺, and NH₃ tune was optimized for maximum counts of Ti(NH₂)⁺.

The 8800 ICP-QQQ includes a deflection lens positioned after the ORS³. An ion's trajectory within the deflection lens is determined by the kinetic energy of the ion and

Table 1.	8800 ICP-QQ) tuning paramet	ers for each gas mode
----------	-------------	------------------	-----------------------

	No gas mode	H ₂ mode	0_{2} mode	NH ₃ mode
Cell exit (V)		-6	10	
Deflect (V)	20	-10	-4	3
Plate bias (V)		-1	00	
Cell gas	N/A	H ₂	02	NH ₃ /He
Cell gas flow rate (mL/min)	N/A	5.0	0.5	1.5
Octopole bias (V)	-8	-25	-18	-8
Octopole RF (V)		18	30	
KED (V)	5		-8	

the voltage applied to the lens. Changes in octopole bias and/or cell gas flow rate alter the kinetic energy of the ion at the deflection lens, so the "deflect" voltage was tuned to maximize ion transmission for each set of cell conditions. Tuning parameters for each of the three gas modes are summarized in Table 1.

Plasma conditions were tuned for robustness. Theoretically, the plasma conditions (which determine the plasma temperature) could affect reaction efficiency since each ionic species may exist in multiple electronic states (ground state and excited states) in the plasma, and ions in different electronic states are known to have different reactivity [9, 10]. However, it is unlikely that small changes in plasma conditions would have a significant effect on reaction efficiency as long as the plasma is operated consistently in "hot plasma conditions" as defined by Ce^+/CeO^+ of < a few %.

Sample preparation

Six multi-element solutions were prepared from multielement standards purchased from SPEX Certiprep (New Jersey, USA) and single standards bought from Kanto Kagaku (Saitama, Japan) as detailed below.

Solution 1:	1 ppm of each of Li, Be, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Tl, Pb, Bi, Th and U in 1% $\rm HNO_3$
Solution 2:	1 ppm of each of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in $1\%~\rm{HNO}_3$
Solution 3:	1 ppm of each of B, Si, P, S, Ti, Ge, Zr, Nb, Mo, Ta, W and Re in 0.1% $\rm HF$
Solution 4:	1 ppm of each of Ru, Rh, Pd, Sn, Sb, Te, Hf, Ir, Pt and Au in 1% HNO ₃ /0.5% HCl
Solution 5:	1 ppm of each of Cl, Br and I in 1% TMAH
Solution 6:	100 ppb Hg in 1% HNO ₃ /0.5% HCl

Blank solutions matching the acid content of each standard were also prepared for blank subtraction to determine the net sensitivity in each mode. For each element, several mass-pairs (combinations of Q1 set mass and Q2 set mass) were surveyed in order to determine the net sensitivity of the element and its various product ions. So for each analyte mass-pair, Q1 was set to the mass of the natural isotope (the precursor ion), and Q2 was set to either the same mass (Q1 = Q2) or the mass-shifted m/z of the product ion $(Q2 = Q1 + \Delta m)$. The common mass-shift settings (the mass difference between Q1 and Q2) associated with the most common reaction product ion transitions (e.g., +16 amu for O_2 reaction mode) are predefined in the ICP-MS MassHunter software, to aid method development.

Reaction data

The sensitivity of 70 elements and their respective product ions was studied in no gas, O_2 , NH₃ and H₂ modes and the results are summarized in Table 2A (absolute sensitivity) and Table 2B (sensitivity as % relative to no gas mode).

It should be emphasized that the sensitivity data given here has not been optimized for individual elements; all results were obtained using the tuning parameters given in Table 1. Tuning cell parameters for a target analyte ion would lead to an increase in sensitivity of that ion.

The data given in the tables is designed to provide an insight on the reactivity and product ion formation of a wide range of elements with O_2 , NH_3 and H_2 . For example, we can see from the data that some elements form not only oxides but also dioxides and trioxides. In certain applications, it may be possible to achieve lower detection limits by measuring higher cluster ions.

Conclusions

This note provides fundamental reaction data that was obtained experimentally using an Agilent 8800 Triple Quadrupole ICP-MS (ICP-QQQ) with ORS³ collision reaction cell. The tandem mass spectrometer layout allows the 8800 ICP-QQQ to use MS/MS mode, where both quadrupoles (Q1 and Q2) are operated as unit mass filters. This allows precise control of reaction chemistry in either on-mass or mass-shift mode, to eliminate problematic spectral interferences that cannot be removed with conventional ICP-QMS. With MS/MS, mass selection is performed by the first quadrupole (Q1), allowing the cell to operate much more efficiently and selectively, and opening up the potential of reaction cell chemistry in ICP-MS to a wide range of elements. The sensitivity data for 70 elements obtained in different reaction gas modes (oxygen, ammonia and hydrogen) has been investigated in order to provide valuable insight into reaction cell methodology and to aid method development when using the 8800 ICP-QQQ in reaction mode. By referring to the data in the tables, you can see at a glance which elements form potentially useful product ions.

References

- 1. D.R. Bandura, V.I. Baranov and S.D. Tanner, Fresenius J. Anal. Chem., 2001, 370, 454-470
- 2. John W. Olesik and Deanna R. Jones, *J. Anal. At. Spectrom.*, 2006, 21, 141-159
- *3. Agilent 8800 ICP-QQQ application handbook*, 5991-2802EN
- 4. V.G. Anicich, *The Astrophysical Journal Supplement* Series, 1993, 84, 215-315
- 5. York University web site, http://www.chem.yorku. ca/profs/bohme/research/selection_table.html
- 6. Agilent application note, Improvement of ICP-MS detectability of phosphorus and titanium in high purity silicon samples using the Agilent 8800 Triple Quadrupole ICP-MS, 5991-2466EN
- Agilent application note, Trace level analysis of sulfur, phosphorus, silicon and chlorine in NMP using the Agilent 8800 Triple Quadrupole ICP-MS, 5991-2303EN
- 8. Lieve Balcaen and et al, *Anal. Chim. Acta*, 2014, 809, 27, 1-8
- 9. M. Hamdan and et al., *J. Phys. B: At. Mol. Phys.*, 1984, 17, 849-856
- 10. 10. P. B. Armentrout, *J. Anal. At. Spectrom.*, 2004, 19, 571-580

			No	gas			H,	, (cps/p	opb)						0 ₂ (cps	/ppl	b)		
Element	Atomic Num	Mass Num	(cp	os/ppb)		M⁺		MH+	P	ИН ₂ +	$\mathrm{MH_{3}^{+}}$		\mathbf{M}^+		M0+		M0 ₂ +	M	0 ₃ ⁺
				ΔМ		0		1		2	3		0		16		32		18
Li	3	7		41759	•	4521		0		0	0	•	232		0		0		0
Be	4	9	•	10193	•	3898	•	526		1	1	•	136		18		6		0
В	5	11	•	5266	•	2193		5		39	0	•	317		6		1		0
Na	11	23		57839	•	39584		0		0	0		16182		0		0		0
Mg	12	24		39815		24945		9		0	0		13593		1031		8		2
AI	13	27		56763		34045		1		0	0		22139		1398		3		22
Si	14	28	•	16421	•	10884	•	5137		22	1	•	3386	•	2482	•	187		7
Р	15	31	•	2486	•	1285	•	485		95	6		21	•	902		3		0
S	16	32	•	6181	•	4137	•	631		97	4	•	131	•	2038		2		0
CI	17	35	•	226		2		6	•	102	0		0		6		0		0
К	19	39	•	43539	•	33850		0		0	0	•	20183		0		0		0
Са	20	44	•	2142	•	1249		0		0	0	•	987		80		22		0
Sc	21	45	•	95839	•	48343	•	807		0	0	•	1186	•	45969	•	524		16
Ті	22	47	•	5107	•	2940		21		0	0		77		2502		49		17
V	23	51	•	74095	•	43074	•	132		0	0		2118	•	46960	•	1605	•	170
Cr	24	52	•	64552	•	34482		7		0	0	•	28691	•	11279	•	254		52
Mn	25	55	•	81996	•	33599		40		0	0	•	37512	•	13080		22		24
Fe	26	56	•	66340	•	32190	•	143		0	0	•	29356	•	15154		66		14
Со	27	59	•	69707	•	45629		57		1	0	•	29359	•	16187		59		31
Ni	28	60	•	14472	•	12522		2		0	0		7848	•	1877		22		2
Cu	29	63	•	34480	•	27423		0		0	0	•	20842	•	294		35		0
Zn	30	66	•	11313	•	3930		0		0	0	•	6120	•	303		2		1
Ga	31	71	•	38632	•	14743		0		0	0	•	22568		0		0		0
Ge	32	72	•	17998	•	7688		92		0	0	•	7062	•	1719	•	161		1
As	33	75	•	10603	•	6438	•	131		1	0	•	334	•	6013		6		0
Se	34	82*	•	732	•	282		9		0	0	•	212	•	204		0		0
Br	35	81	•	1847	•	799	•	260		8	0	•	116	•	173		1		0
Rb	37	85	•	76018	•	32869		0		0	0	•	43163		0		0		0
Sr	38	88	•	95671	•	40573		15		0	0	•	52149	•	5582	•	1471		0
Y	39	89	•	150007	•	81923		98		0	0	•	978	•	77354	•	1877		11
Zr	40	90	•	58386	•	31671		35		0	0	•	188	•	26699	•	5106	•	1432
Nb	41	93	•	102753	•	76003		57		0	0	•	557	•	4744	•	48482		14
Mo	42	95	•	17028	•	10677		3		0	0	•	752	•	956	•	6125		6
Ru	44	101	•	16832	•	10171		1		0	0	•	4789	•	3427	•	121		46
Rh	45	103	•	85372	•	47902		5		0	0	•	32214	•	7102		40		6
Pd	46	105	•	15176	•	11137		1		0	0	•	8697	•	161		7		0
Ag	47	107	•	42300	•	24631		0		0	0	•	29437		1		1		0
Cd	48	111	•	10075	•	3724		0		0	0	•	6238		55		0		0
Sn	50	118	•	28708	•	8585		2		0	0	•	10789	•	1496		88		0
Sb	51	121	•	34183	•	12507		4		0	0	•	8256	•	8954		31		0
Те	52	125	•	1413	•	554		0		0	0	•	394	•	324		0		0
Ι	53	127		20843	•	10059		5		0	0	•	9338		2819		2		0

Table 2A. Sensitivity of elemental ions and their reaction product ions in no gas mode and three reaction cell modes. The green circle represents sensitivity> 1000 cps/ppb and the yellow circle represents sensitivity> 100 cps/ppb

⁸²Se was used in order to allow measurement of the no gas mode sensitivity

			No	gas			H ₂ (cps/p	opb)					0 ₂ (cps	/pp	b)		
Element	Atomic Num	Mass Num	(cț	os/ppb)		M⁺	MH+	MH ₂ ⁺	MH ₃ ⁺		M+		M0+		M0 ₂ +	Ν	/IO ₃ +
				ΔΜ		0	1	2	3		0		16		32		48
Cs	55	133	•	100507	•	45313	0	0	0	•	72832		0		0		0
La	57	139	•	132424	•	98130	24	0	0	•	320	•	87357		2007		0
Ce	58	140		130831	•	53284	18	0	0	•	115	•	80926		1311		72
Pr	59	141	•	181014	•	47241	18	0	0	•	139	•	88626	•	767		0
Nd	60	146	•	26895	•	9859	3	0	0		30	•	16631	•	175		0
Sm	62	147	•	21771	•	8404	2	0	0	•	315	•	14053	•	305		0
Eu	63	153	•	85415	•	28133	7	0	0	•	24774	•	19372		1969		0
Gd	64	157		28661	•	9333	4	0	0		1282	•	14006	•	362		1
Tb	65	159		164457	•	56971	17	0	0	•	511	•	95468		1918		5
Dy	66	163	•	36080	•	14809	6	0	0	•	175	•	28535	•	420		1
Ho	67	165	•	181582	•	56523	27	0	0	•	680	•	99092		2435		11
Er	68	166	•	50501	11 • 18679		9	0	0	•	296	•	34575	•	982		7
Tm	69	169		172859	•	51606	73	0	0		8973	•	100996		2411		17
Yb	70	172	•	34696	•	11596	30	0	0	•	10624	•	9081	•	415		1
Lu	71	175	•	153754	•	55401	11	0	0	•	1994	•	104484		3932		32
Hf	72	178	•	36060	•	13109	6	0	0		15	•	13849		7833		0
Та	73	181		150282	•	63258	48	0	0		63	•	5121		75315	•	235
W	74	182	•	36381	•	17171	20	0	0		60	•	2035		17187	•	266
Re	75	185	•	48114	•	19353	36	0	0	•	3173	•	4413		10111	•	5323
lr	77	193	•	50400	•	41464	57	3	0	•	17592	•	12528	•	664	•	105
Pt	78	195	•	18826	•	17165	12	3	0	•	10722	•	1409		11		1
Au	79	197	•	32902	•	31730	4	3	0	•	18775	•	114		4		0
Hg	80	202	•	8205	•	3859	0	0	0	•	4710		4		0		0
TI	81	205	•	67878	•	25667	0	0	0	•	42998		0		0		0
Pb	82	208	•	46191	•	18386	0	0	0		26069	•	589		0		0
Bi	83	209	•	77596	•	29212	1	0	0	•	41364	•	3776		0		0
Th	90	232	•	87948	•	31544	22	2	0		2	•	16035		NA		NA
U	92	238		90868		32366	14	0	0		2	•	559		NA		NA

Table 2A. continued showing ${\rm H_2}$ and ${\rm O_2}$

Table 2A. continued showing NH	;
--------------------------------	---

Ele	Þ	Ma									NH	, (cps∕pp	ob)					
men	Num	N SSI		M+	M(NH)+	Ν	1(NH ₂)+	M((NH ₃)+	MNH	(NH ₃)+	MNH ₂ (M	NH ₃)+	M(NH ₃) ₂ ⁺	MNH(NH ₃) ₂ ⁺	MNH ₂ (NH ₃) ₂ ⁺	М	(NH ₃) ₃ +
	- 6.	m		0	15		16		17	32		33		34	49	50		51
Li	3	7	•	1543	0		0		2		0		0	1	0	0		1
Be	4	9	•	366	0		38		3		0	•	116	16	0	• 190	•	249
В	5	11	•	131	0		12		2		51		1	0	• 258	3		0
Na	11	23		40985	0		0		80		0		0	15	0	0		0
Mg	12	24		28157	0		0	•	178		0		0	55	1	0		36
AI	13	27		35328	0		0		80		0		2	3	1	0		0
Si	14	28		1511	0	•	438		3		1		0	0	1	0		0
Р	15	31		9	1		2		0		0		0	0	0	0		0
S	16	32		0	0		0		0		0		0	0	0	0		0
CI	17	35		16	0		0		0		0		0	0	0	0		0
К	19	39		36532	0		0		21		0		0	1	0	0		0
Са	20	44		1562	0		1		5		1		0	1	0	0		0
Sc	21	45		18843	• 7197	•	2139		64	•	2167	•	372	47	• 1256	• 406	•	115
Ti	22	47		1148	- 469		78		1		100		13	0	84	17		2
V	23	51		39430	831	•	4927	•	185	•	301	•	362	124	9 338	668	•	130
Cr	24	52		48910	8		9	•	182		3		1	<u> </u>	4	3		14
Mn	25	55		64783	0		4	•	278		0		1	9 187	0	1		26
Fe	26	56		50691	2		27	•	280		1		8	• 2474	2	7	•	254
Со	27	59		48441	3		20	•	493		2		5	• 3499	2	4	•	800
Ni	28	60		10516	0		1		96		0		0	9 317	0	0	•	566
Cu	29	63		25533	0		1	•	210		0		0	• 1856	0	0		17
Zn	30	66		9000	0		0	•	119		0		0	61	0	0		12
Ga	31	71		30730	0		0		68		0		0	11	0	0		0
Ge	32	72		6211	0	•	2571		25		0	•	1418	73	0	• 185	•	588
As	33	75		2569	8	•	1599		59		1	•	230	32	1	16		4
Se	34	82*		347	0		0		0		0		0	0	0	0		0
Br	35	81		1	0		0		0		0		0	0	0	0		0
Rb	37	85		54979	1		0		0		0		0	0	0	0		0
Sr	38	88		79654	0		48	•	147		15		2	16	3	1		11
Y	39	89		47349	• 22301	•	5740	•	587	•	5828	•	974	• 154	• 1903	672	•	187
Zr	40	90		11579	• 10060	•	790		14	•	2172	•	155	6	• 1433	• 255		29
Nb	41	93	•	19857	• 6968	•	206		5		28		1	0	22	1		0
Mo	42	95	•	10344	23		12		31		0		0	• 143	0	0		1
Ru	44	101		11426	1		2		47		0		0	• 137	0	0		10
Rh	45	103		55102	0		3	•	226		0		1	<u> </u>	0	0		27
Pd	46	105		11381	0		0		49		0		0	• 127	0	0	•	130
Ag	47	107		37325	0		0		81		0		0	• 247	0	0		3
Cd	48	111		8290	0		0		21		0		0	6	0	0		1
Sn	50	118		16684	0		5		76		0		1	69	0	0		3
Sb	51	121		24016	3		13		1147		1		3	• 179	1	1		4
Те	52	125	•	1096	0		0		0		0		0	0	0	0		0
I	53	127		5	0		0		0		0		0	0	0	0		0

 $^{\rm 82}{\rm Se}$ was used in order to allow measurement of the no gas mode sensitivity

Ele	ъ	Ma	NH ₃ (cps/ppb)																	
ment	Num	N SSI		M+	Ν	/I(NH)⁺	Μ	(NH ₂)+	M((NH ₃)⁺	M	IH(NH ₃) ⁺	M	NH ₂ (NH ₃) ⁺	M(NH ₃) ₂ ⁺	M	NH(NH ₃) ₂ ⁺	MN	IH ₂ (NH ₃) ₂ ⁺	M(NH ₃) ₃ ⁺
-	- 5.	um		0		15		16		17	32			33	34		49		50	51
Cs	55	133		80994		0		0		3		0		0	0		0		0	0
La	57	139		51900	•	31021	•	12190	•	868	•	1145	•	284	96	•	245	•	123	76
Ce	58	140		47439	•	22882		8447	•	521	•	915	•	328	68	•	238	•	130	71
Pr	59	141		96491	•	3154		7649	•	505	•	107	•	158	47		26		47	39
Nd	60	146	•	18452	•	190	•	1053		62		10		22	8		2		8	7
Sm	62	147	•	14593		1	•	513		32		1		16	7		0		7	7
Eu	63	153		59006		0	•	150		79 56		4		3	8		1		0	7
Gd	64	157		11875	•	4066	•	840		56		589		77	13	•	160		44	12
Tb	65	159	•	78912	•	13589	•	4297	•	160		3202	•	498	67	•	941	•	318	77
Dy	66	163	•	28299	•	121	•	635		33		11		42	8		3		18	7
Ho	67	165	•	112235	•	826	•	2120	•	• 133		93		262	35		20		98	31
Er	68	166	•	32776	•	367	•	730	38			45		89	10		9		32	10
Tm	69	169		113722		27	•	749	•	103		4		64	20		1		16	17
Yb	70	172		22193		0		24		22		0		1	3		0		0	3
Lu	71	175		115121		1507		3205	•	259	•	359	•	449	56		85	•	153	47
Hf	72	178		6021		13915	•	703		15		2018		99	2	•	470		54	4
Та	73	181		23148	•	29292		2691		32	•	230		16	1	•	117		5	0
W	74	182		9277	•	6208	•	315		3		13		1	0		1		0	0
Re	75	185	•	39126	•	289		19		2		1		0	0		0		0	0
lr	77	193	•	25337	•	1931		20	•	143		89		22	31		4		5	1
Pt	78	195	•	15021		7		4		82		2		2	<u> </u>		1		2	• 121
Au	79	197	•	23788		5		1	•	112		2		0	<u> </u>		1		0	7
Hg	80	202		2		0		0		0		0		0	0		0		0	0
TI	81	205	•	52670		0		0		2		0		0	0		0		0	0
Pb	82	208	•	35788		0		1		5		0		0	1		0		0	0
Bi	83	209		60593		2		4		11		0		0	1		0		0	0
Th	90	232		15603	•	32219	•	6181	•	229		NA		NA	NA		NA		NA	NA
U	92	238		29649		24271		4917	•	248		NA		NA	NA		NA		NA	NA

Table 2A. continued showing NH_3

Table 2B. Sensitivity (relative to no gas mode sensitivity) of elemental ions and their respective product ions in three reaction cell modes. The green circlerepresents sensitivity > 2 % and the yellow circle represents sensitivity > 0.5%.

			No gas				H ₂ (%)						0 ₂ (%)		
Element	Atomic Num	Mass Num	(cps/ppb)		M+		MH⁺		\mathbf{MH}_{2}^{+}	$\mathbf{MH_{3}^{+}}$		M+		M0+		M0 ₂ +	\mathbf{MO}_{3}^{+}
			ΔΜ		0		1		2	3		0		16		32	48
Li	3	7	41759		10.8%		0.0%		0.0%	0.0%	•	0.6%		0.0%		0.0%	0.0%
Be	4	9	10193		38.2%		5.2%		0.0%	0.0%	•	1.3%		0.2%		0.1%	0.0%
В	5	11	5266	•	41.6%		0.1%		0.7%	0.0%	•	6.0%		0.1%		0.0%	0.0%
Na	11	23	57839	•	68.4%		0.0%		0.0%	0.0%	•	28.0%		0.0%		0.0%	0.0%
Mg	12	24	39815	•	62.7%		0.0%		0.0%	0.0%	•	34.1%	•	2.6%		0.0%	0.0%
AI	13	27	56763	•	60.0%		0.0%		0.0%	0.0%	•	39.0%	•	2.5%		0.0%	0.0%
Si	14	28	16421	•	66.3%		31.3%		0.1%	0.0%	•	20.6%	•	15.1%	•	1.1%	0.0%
Р	15	31	2486	•	51.7%		19.5%		3.8%	0.2%	•	0.8%	•	36.3%		0.1%	0.0%
S	16	32	6181	•	66.9%		10.2%		1.6%	0.1%	•	2.1%	•	33.0%		0.0%	0.0%
CI	17	35	226	•	1.0%		2.8%		45.3%	0.0%		0.1%	•	2.6%		0.0%	0.0%
К	19	39	43539		77.7%		0.0%		0.0%	0.0%	•	46.4%		0.0%		0.0%	0.0%
Са	20	44	2142	•	58.3%		0.0%		0.0%	0.0%	•	46.1%	•	3.7%	•	1.0%	0.0%
Sc	21	45	95839	•	50.4%	•	0.8%		0.0%	0.0%	•	1.2%	•	48.0%	•	0.5%	0.0%
Ti	22	47	5107	•	57.6%		0.4%		0.0%	0.0%	•	1.5%	•	49.0%	•	1.0%	0.3%
V	23	51	74095	•	58.1%		0.2%		0.0%	0.0%	•	2.9%	•	63.4%	•	2.2%	0.2%
Cr	24	52	64552		53.4%		0.0%		0.0%	0.0%	•	44.4%	•	17.5%		0.4%	0.1%
Mn	25	55	81996	•	41.0%		0.0%		0.0%	0.0%	•	45.7%	•	16.0%		0.0%	0.0%
Fe	26	56	66340	•	48.5%		0.2%		0.0%	0.0%	•	44.3%	•	22.8%		0.1%	0.0%
Со	27	59	69707	•	65.5%		0.1%		0.0%	0.0%	•	42.1%	•	23.2%		0.1%	0.0%
Ni	28	60	14472	•	86.5%		0.0%		0.0%	0.0%	•	54.2%	•	13.0%		0.1%	0.0%
Cu	29	63	34480		79.5%		0.0%		0.0%	0.0%	•	60.4%	•	0.9%		0.1%	0.0%
Zn	30	66	11313	•	34.7%		0.0%		0.0%	0.0%	•	54.1%	•	2.7%		0.0%	0.0%
Ga	31	71	38632	•	38.2%		0.0%		0.0%	0.0%	•	58.4%		0.0%		0.0%	0.0%
Ge	32	72	17998		42.7%	•	0.5%		0.0%	0.0%		39.2%		9.5%	•	0.9%	0.0%
As	33	75	10603		60.7%	•	1.2%		0.0%	0.0%		3.2%		56.7%		0.1%	0.0%
Se	34	82*	732		38.5%	•	1.3%		0.0%	0.0%		29.0%		27.9%		0.1%	0.0%
Br	35	81	1847	•	43.3%		14.1%		0.4%	0.0%	•	6.3%	•	9.4%		0.1%	0.0%
Rb	37	85	76018		43.2%		0.0%		0.0%	0.0%		56.8%		0.0%		0.0%	0.0%
Sr	38	88	95671		42.4%		0.0%		0.0%	0.0%		54.5%		5.8%	•	1.5%	0.0%
Y	39	89	150007	•	54.6%		0.1%		0.0%	0.0%	•	0.7%	•	51.6%	•	1.3%	0.0%
Zr	40	90	58386		54.2%		0.1%		0.0%	0.0%		0.3%		45.7%		8.7%	• 2.5%
Nb	41	93	102753		74.0%		0.1%		0.0%	0.0%	•	0.5%		4.6%	•	47.2%	0.0%
Mo	42	95	17028	•	62.7%		0.0%		0.0%	0.0%	•	4.4%	•	5.6%	•	36.0%	0.0%
Ru	44	101	16832	•	60.4%		0.0%		0.0%	0.0%	•	28.4%	•	20.4%	•	0.7%	0.3%
Rh	45	103	85372	•	56.1%		0.0%		0.0%	0.0%	•	37.7%	•	8.3%		0.0%	0.0%
Pd	46	105	15176	•	73.4%		0.0%		0.0%	0.0%	•	57.3%	•	1.1%		0.0%	0.0%
Ag	47	107	42300	•	58.2%		0.0%		0.0%	0.0%		69.6%		0.0%		0.0%	0.0%
Cd	48	111	10075		37.0%		0.0%		0.0%	0.0%		61.9%	•	0.5%		0.0%	0.0%
Sn	50	118	28708	•	29.9%		0.0%		0.0%	0.0%	•	37.6%	•	5.2%		0.3%	0.0%
Sb	51	121	34183		36.6%		0.0%		0.0%	0.0%	•	24.2%		26.2%		0.1%	0.0%
Те	52	125	1413		39.2%		0.0%		0.0%	0.0%		27.9%		22.9%		0.0%	0.0%
1	53	127	20843		48.3%		0.0%		0.0%	0.0%	•	44.8%	•	13.5%		0.0%	0.0%

⁸²Se was used in order to allow measurement of the no gas mode sensitivity

			No gas		H ₂ (%))			0,	(%)	
Element	Atomic Num	Mass Num	(cps/ppb)	M+	MH+	MH ₂ ⁺	\mathbf{MH}_{3}^{+}	M+	M0+	M0 ₂ +	M0 ₃ +
			ΔМ	0	1	2	3	0	16	32	48
Cs	55	133	100507	• 45.1%	0.0%	0.0%	0.0%	• 72.5%	0.0%	0.0%	0.0%
La	57	139	132424	• 74.1%	0.0%	0.0%	0.0%	0.2%	66.0%	• 1.5%	0.0%
Ce	58	140	130831	• 40.7%	0.0%	0.0%	0.0%	0.1%	61.9%	• 1.0%	0.1%
Pr	59	141	181014	• 26.1%	0.0%	0.0%	0.0%	0.1%	• 49.0%	0.4%	0.0%
Nd	60	146	26895	36.7%	0.0%	0.0%	0.0%	0.1%	61.8%	0.6%	0.0%
Sm	62	147	21771	• 38.6%	0.0%	0.0%	0.0%	• 1.4%	64.5%	• 1.4%	0.0%
Eu	63	153	85415	• 32.9%	0.0%	0.0%	0.0%	• 29.0%	• 22.7%	• 2.3%	0.0%
Gd	64	157	28661	• 32.6%	0.0%	0.0%	0.0%	• 4.5%	• 48.9%	• 1.3%	0.0%
Tb	65	159	164457	• 34.6%	0.0%	0.0%	0.0%	0.3%	5 8.1%	• 1.2%	0.0%
Dy	66	163	36080	• 41.0%	0.0%	0.0%	0.0%	0.5%	• 79.1%	• 1.2%	0.0%
Ho	67	165	181582	• 31.1%	0.0%	0.0%	0.0%	0.4%	• 54.6%	• 1.3%	0.0%
Er	68	166	50501	• 37.0%	0.0%	0.0%	0.0%	0.6%	68.5%	• 1.9%	0.0%
Tm	69	169	172859	• 29.9%	0.0%	0.0%	0.0%	5 .2%	• 58.4%	• 1.4%	0.0%
Yb	70	172	34696	• 33.4%	0.1%	0.0%	0.0%	• 30.6%	• 26.2%	• 1.2%	0.0%
Lu	71	175	153754	36.0%	0.0%	0.0%	0.0%	• 1.3%	68.0%	• 2.6%	0.0%
Hf	72	178	36060	36.4%	0.0%	0.0%	0.0%	0.0%	• 38.4%	• 21.7%	0.0%
Та	73	181	150282	• 42.1%	0.0%	0.0%	0.0%	0.0%	• 3.4%	5 0.1%	0.2%
W	74	182	36381	• 47.2%	0.1%	0.0%	0.0%	0.2%	5 .6%	• 47.2%	0.7%
Re	75	185	48114	• 40.2%	0.1%	0.0%	0.0%	6.6%	9.2%	• 21.0%	• 11.1%
lr	77	193	50400	• 82.3%	0.1%	0.0%	0.0%	• 34.9%	• 24.9%	• 1.3%	0.2%
Pt	78	195	18826	91.2%	0.1%	0.0%	0.0%	• 57.0%	• 7.5%	0.1%	0.0%
Au	79	197	32902	96.4%	0.0%	0.0%	0.0%	5 7.1%	0.3%	0.0%	0.0%
Hg	80	202	8205	• 47.0%	0.0%	0.0%	0.0%	• 57.4%	0.0%	0.0%	0.0%
TI	81	205	67878	• 37.8%	0.0%	0.0%	0.0%	63.3%	0.0%	0.0%	0.0%
Pb	82	208	46191	• 39.8%	0.0%	0.0%	0.0%	5 6.4%	• 1.3%	0.0%	0.0%
Bi	83	209	77596	• 37.6%	0.0%	0.0%	0.0%	5 3.3%	• 4.9%	0.0%	0.0%
Th	90	232	87948	• 35.9%	0.0%	0.0%	0.0%	0.0%	• 18.2%	NA	NA
U	92	238	90868	• 35.6%	0.0%	0.0%	0.0%	0.0%	0.6%	NA	NA

Table 2B. continued showing H_2 and O_2

Table	2B.	cont	tinued	showing	$\rm NH_3$

Ele	ъ	M										NH	l ₃ (%)							
men	Num	N sst		M+	M(NH)+	Ν	/I (NH ₂)+	Μ	(NH ₃)+	M	NH(NH ₃)+	N	/INH ₂ (NH ₃) ⁺	M(NH ₃) ₂ +	MNH(NH ₃) ₂ ⁺		MNH ₂ (NH ₃) ₂ ⁺	M	(NH ₃) ₃ +
-	- <u>c</u>	lum		0	15		16		17		32		33		34	49	Ť	50		51
Li	3	7	•	3.7%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Be	4	9		3.6%	0.0%		0.4%		0.0%		0.0%	•	1.1%		0.2%	0.0%		1.9%	•	2.4%
В	5	11		2.5%	0.0%		0.2%		0.0%	•	1.0%		0.0%		0.0%	• 4.9%		0.1%		0.0%
Na	11	23		70.9%	0.0%		0.0%		0.1%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Mg	12	24		70.7%	0.0%		0.0%		0.4%		0.0%		0.0%		0.1%	0.0%		0.0%		0.1%
AI	13	27		62.2%	0.0%		0.0%		0.1%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Si	14	28		9.2%	0.0%	•	2.7%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Р	15	31		0.3%	0.1%		0.1%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
S	16	32		0.0%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
CI	17	35		7.3%	0.0%		0.0%		0.1%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
K	19	39		83.9%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Са	20	44		72.9%	0.0%		0.1%		0.2%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Sc	21	45		19.7%	• 7.5%	•	2.2%		0.1%	•	2.3%		0.4%		0.0%	• 1.3%		0.4%		0.1%
Ti	22	47	•	22.5%	9.2%	•	1.5%		0.0%	•	2.0%		0.2%		0.0%	• 1.7%		0.3%		0.0%
V	23	51	•	53.2%	• 1.1%	•	6.7%		0.3%		0.4%	•	0.5%		0.2%	0.5%		0.9%		0.2%
Cr	24	52		75.8%	0.0%		0.0%		0.3%		0.0%		0.0%	•	0.6%	0.0%		0.0%		0.0%
Mn	25	55		79.0%	0.0%		0.0%		0.3%		0.0%		0.0%		0.2%	0.0%		0.0%		0.0%
Fe	26	56		76.4%	0.0%		0.0%		0.4%		0.0%		0.0%	•	3.7%	0.0%		0.0%		0.4%
Со	27	59		69.5%	0.0%		0.0%	•	0.7%		0.0%		0.0%	•	5.0%	0.0%		0.0%	•	1.1%
Ni	28	60		72.7%	0.0%		0.0%	•	0.7%		0.0%		0.0%	•	2.2%	0.0%		0.0%	•	3.9%
Cu	29	63		74.1%	0.0%		0.0%	•	0.6%		0.0%		0.0%	•	5.4%	0.0%		0.0%		0.0%
Zn	30	66		79.6%	0.0%		0.0%	•	1.1%		0.0%		0.0%	•	0.5%	0.0%		0.0%		0.1%
Ga	31	71		79.5%	0.0%		0.0%		0.2%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Ge	32	72		34.5%	0.0%	•	14.3%		0.1%		0.0%		7.9%		0.4%	0.0%		1.0%	•	3.3%
As	33	75		24.2%	0.1%	•	15.1%	•	0.6%		0.0%		2.2%		0.3%	0.0%		0.2%		0.0%
Se	34	82*		47.4%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Br	35	81		0.0%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Rb	37	85		72.3%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Sr	38	88	•	83.3%	0.0%		0.0%		0.2%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Y	39	89		31.6%	• 14.9%		3.8%		0.4%		3.9%		0.6%		0.1%	• 1.3%		0.4%		0.1%
Zr	40	90	•	19.8%	• 17.2%	•	1.4%		0.0%	•	3.7%		0.3%		0.0%	• 2.5%		0.4%		0.0%
Nb	41	93	•	19.3%	6.8%		0.2%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
Мо	42	95	•	60.7%	0.1%		0.1%		0.2%		0.0%		0.0%	•	0.8%	0.0%		0.0%		0.0%
Ru	44	101	•	67.9%	0.0%		0.0%		0.3%		0.0%		0.0%	•	0.8%	0.0%		0.0%		0.1%
Rh	45	103	•	64.5%	0.0%		0.0%		0.3%		0.0%		0.0%	•	0.6%	0.0%		0.0%		0.0%
Pd	46	105		75.0%	0.0%		0.0%		0.3%		0.0%		0.0%	•	0.8%	0.0%		0.0%	•	0.9%
Ag	47	107	•	88.2%	0.0%		0.0%		0.2%		0.0%		0.0%	•	0.6%	0.0%		0.0%		0.0%
Cd	48	111		82.3%	0.0%		0.0%		0.2%		0.0%		0.0%		0.1%	0.0%		0.0%		0.0%
Sn	50	118		58.1%	0.0%		0.0%		0.3%		0.0%		0.0%		0.2%	0.0%		0.0%		0.0%
Sb	51	121		70.3%	0.0%		0.0%		3.4%		0.0%		0.0%	•	0.5%	0.0%		0.0%		0.0%
Те	52	125		77.6%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%
I	53	127		0.0%	0.0%		0.0%		0.0%		0.0%		0.0%		0.0%	0.0%		0.0%		0.0%

⁸²Se was used in order to allow measurement of the no gas mode sensitivity

Elemen	Atomic Num	Ma											NH ₃ (%)						
		Iss Num	M+		M(NH)+		M(NH ₂) ⁺		M(NH ₃) ⁺		$MNH(NH_3)^+$		$MNH_2(NH_3)^+$		M(NH ₃) ₂ ⁺	MNH(NH ₃) ₂ ⁺	MNH ₂ (NH ₃) ₂ ⁺	M(NH ₃) ₃ ⁺	
-				0		15		16		17		32	33		34	49	50		51
Cs	55	133	•	80.6%		0.0%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
La	57	139	•	39.2%	•	23.4%		9.2%	•	0.7%	•	0.9%	0	.2%	0.1%	0.2%	0.1%		0.1%
Ce	58	140	•	36.3%	•	17.5%		6.5%		0.4%	•	0.7%	0	.3%	0.1%	0.2%	0.1%		0.1%
Pr	59	141	•	53.3%	•	1.7%		4.2%		0.3%		0.1%	0	.1%	0.0%	0.0%	0.0%		0.0%
Nd	60	146	•	68.6%	•	0.7%		3.9%		0.2%		0.0%	0	.1%	0.0%	0.0%	0.0%		0.0%
Sm	62	147	•	67.0%		0.0%	•	2.4%		0.1%		0.0%	0	.1%	0.0%	0.0%	0.0%		0.0%
Eu	63	153	•	69.1%		0.0%		0.2%		0.1%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Gd	64	157	•	41.4%	•	14.2%		2.9%		0.2%	•	2.1%	0	.3%	0.0%	• 0.6%	0.2%		0.0%
Tb	65	159	•	48.0%	•	8.3%	•	2.6%		0.1%	•	1.9%	0	.3%	0.0%	• 0.6%	0.2%		0.0%
Dy	66	163	•	78.4%		0.3%	•	1.8%		0.1%		0.0%	0	.1%	0.0%	0.0%	0.1%		0.0%
Ho	67	165	•	61.8%		0.5%	•	1.2%		0.1%		0.1%	0	.1%	0.0%	0.0%	0.1%		0.0%
Er	68	166	•	64.9%	•	0.7%	•	1.4%		0.1%		0.1%	0	.2%	0.0%	0.0%	0.1%		0.0%
Tm	69	169		65.8%		0.0%		0.4%		0.1%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Yb	70	172	•	64.0%		0.0%		0.1%		0.1%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Lu	71	175	•	74.9%	•	1.0%	•	2.1%		0.2%		0.2%	0	.3%	0.0%	0.1%	0.1%		0.0%
Hf	72	178	•	16.7%	•	38.6%		2.0%		0.0%	•	5.6%	0	.3%	0.0%	• 1.3%	0.2%		0.0%
Та	73	181	•	15.4%	•	19.5%	•	1.8%		0.0%		0.2%	0	.0%	0.0%	0.1%	0.0%		0.0%
W	74	182	•	25.5%	•	17.1%	•	0.9%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Re	75	185	•	81.3%	•	0.6%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
lr	77	193	•	50.3%	•	3.8%		0.0%		0.3%		0.2%	0	.0%	0.1%	0.0%	0.0%		0.0%
Pt	78	195	•	79.8%		0.0%		0.0%		0.4%		0.0%	0	.0%	• 1.1%	0.0%	0.0%	•	0.6%
Au	79	197	•	72.3%		0.0%		0.0%		0.3%		0.0%	0	.0%	• 1.8%	0.0%	0.0%		0.0%
Hg	80	202		0.0%		0.0%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
TI	81	205	•	77.6%		0.0%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Pb	82	208		77.5%		0.0%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Bi	83	209		78.1%		0.0%		0.0%		0.0%		0.0%	0	.0%	0.0%	0.0%	0.0%		0.0%
Th	90	232		17.7%		36.6%		7.0%		0.3%		NA		NA	NA	NA	NA		NA
U	92	238		32.6%		26.7%		5.4%		0.3%		NA		NA	NA	NA	NA		NA

Table 2B. continued showing NH_{3}

www.agilent.com

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2014 Published May 30, 2014 Publication number: 5991-4585EN

