Evaluating the dispersion of TiO_2 nanoparticles via sp-ICP-MS for sunscreen powder analysis

<u>Chia-Chin (Donna) Hsu^{1*}, Chun-Hua</u> Chen², Meng-Tzu Lai², Yen-Ying (Brian) Laio¹, Ching-Heng (Jones) Hsu³, Chiu-Hun Su^{2*}

1. Agilent Technologies Co. Ltd 2. Industrial Technology Research Institute 3. BASF

BASF The Chemical Company

Introduction

Titanium dioxide (TiO₂) nanoparticles (NPs) are widely used in everyday consumer products such as toothpaste, sunscreens and cosmetics. Because of its high surface area-to-volume ratio, TiO₂ NPs are easy to aggregate due to the high surface activity and changes in surface charge in aqueous solution. Measurement of "real" particle size distribution of the commercial produced in liquid dispersions is not easy and still going on research. Therefore, in this work, we mainly focus on the stability and separation phenomena of TiO₂ NPs of standard material and sunscreens powder in different surfactants, organic or alkaline solution with single particle ICP-MS (spICP-MS).

Experimental

Different diluent

There are 6 different solutions including 1% IPA, 1%FL-70, 1%Triton X-100, 1% 1-butanol(NBA), 1%NH₄OH, and the mix solution with 1%NH₄OH and Triton X-100 are chose to be TiO_2 diluents.

Results and Discussion

TiO₂ RM in different diluents

Fig. Size distribution graph of TiO₂ RM from NH₄OH diluent (right) and from Triton X-100 diluent (left).

Short-term stability of TiO₂ RM (Rutile)

Analyzing TiO₂ RM (Rutile) from Triton X-100 diluent for 8 hours, the RSD(%) of particle concentration, median size, mean size, and most frequent size are < 5%.

Results and Discussion

Commercial Sunscreen powder Sample: Directly dilution-2

Compared with the powder samples diluted directly with 1% Triton X-100 and Triton X-100+NH₄OH mixture, because the particle size is smaller and the particle concentration are more, it shows that the dispersion of the mixture solution on the actual sample is better.

■ From 1% Triton+1% NH4OH ■ From 1% Triton ◆ Median Size(Triton X-100+ NH4OH) ▲ Median Size (Triton X-100)

Reference Material (RM)

The titanium dioxide (TiO_2) nanoparticles were from US Research Nanomaterials (USRN), Inc. The particle size is 30~50nm provided by USRN.

A silver NP Reference Material (Sigma-Aldrich) with a nominal particle size of 40 nm was used to measure the nebulization efficiency of the ICP-MS.

Sunscreen Powder Sample

There are 5 commercial sunscreen powders bought in Taiwan normal pharmacy. Two kinds of sample preparation methods were tested: (1) microwave digestion and (2) direct dilution.

Sample Preparation

All NP RMs and sample solutions were diluted followed by the steps below:

Fig. Size distribution graph (left) and time effect comparison results of size/particle conc. (right) of TiO₂ RM from Triton X-100 diluent.

Commercial Sunscreen powder Sample: Microwave digestion

Then using 2 solutions, Triton X-100 and NH₄OH, to dilute digested sunscreen powder solution. When NH₄OH was used to dilute the digested samples, better particle distributions were obtained, and the number of particles was more. However, when the same digested sample solution was diluted with Triton X-100, the number of particles was few and the size distribution was also poor then NH_4OH .

Fig. Size distribution graph of digested screen powder solution from NH₄OH diluent (right) and from Triton X-100 (left).

So choose NH₄OH to dilute 5 sunscreen powder digested sample. After dilute to ppt level, the results of particle size, particle concentration of 5 samples is in the following table: Fig. Comparison of particle size and particle concentration for 5 powder samples diluted directly with diluents.

Calculate suitable dilution factor for real Sample: quantitative by ICP-MS

Due to the different concentrations of TiO₂ between commercially products, a basis is needed to help determine the appropriate dilution rate. Therefore, although the concentration of Ti ionic concentration can not completely represent the concentration of the TiO₂ NPs, still using ICP-MS to quantify Ti ionic concentration of 5 sunscreen powder samples help to decide the dilution ratio for TiO₂ spICP-MS analysis.

After analyzing 50 ug/L of each sample, the results are shown in the following table. It shows that the Ti ionic concentration isn't related with the labeled concentration. And it also shows different ionic concentration in Triton X-100 only and Triton X- $100+NH_4OH$ diluents.

(unit)	Original labeled TiO ₂ conc. (%, w/w)	Diluted TiO ₂ conc. calculated by labeled conc. (ug/L)	Ti ionic conc.by ICP- MS (diluent:1% Triton X-100) (ppb)	Ti ionic conc.by ICP-MS (diluent: 1% Triton X-100 + NH ₄ OH (ppb)
Sunscreen 1	13	50	1.2	4.9
Sunscreen 2	15	50	6.9	13
Sunscreen 3	14	50	9.1	13.3
Sunscreen 4	14	50	7.1	8.3
Sunscreen 5	14	50	2.6	0.97

Then dilute the sunscreen sample solution to 100ppt by the new Ti ionic concentration results. The result shows NPs concentration are most within $10^7 \sim 10^8$ Particles/L (10,000~100,000 particles/mL) and suitable be analyzed by spICP-MS.

Instrument and Condition

Agilent 7900 ICP-MS and MassHunter's Single Particle Application Module were used for data collecting and analysis. Standard quartz sample introduction systems were used with a 1.5mm injector diameter torch. TiO₂ NPs were measured in no gas mode.

Results and Discussion

TiO₂ **RM in different diluents**

Dilute TiO₂ RM (Anatase) in 1% FL-70, 1% Triton X-100, 1% IPA, 1% NBA and 1% NH_4OH in 1st step, then using DIW to dilute to 30ppt.

From the analyzing data of TiO_2 RM, the particle concentration from Triton X-100 and NH_4OH diluent are more than other diluents. Therefore, we chose Triton X-100 and NH₄OH for the following test.

for 5 sunscreen powders with microwave acid digestion.

Commercial Sunscreen powder Sample: Directly dilution-1

Then using 2 solutions, Triton X-100 and NH₄OH, to dilute sunscreen powder directly. Better dispersion were obtained when Triton X-100 to be diluent, including size and particle

numbers

Fig. Size distribution graph of direct diluted sunscreen powders from NH₄OH diluent (right) and from Triton X-100 (left).

Mixture diluent: Triton X-100 and NH₄OH

Furthermore, because pH of 1%Triton X-100 is 3.97, for consider with polarity and zeta-potential(F. Loosli,, 2013), we try to dispersed the TiO₂ NPs in a mixed Triton X-100 and NH_4OH solution.

for 5 powder samples diluted directly with diluents.

In theory, the ionic concentration is not equal to NP concentration, however, it shows the ICP-MS quantitative result could help to determine the suitable dilution rate for NP analysis of real sample in the future.

Conclusions

In this work, we have established a test method of spICP-MS for TiO₂ nanoparticles on commercially sunscreen powders, including two methods of microwave digestion and direct dilution, and found suitable diluent for TiO₂ nanoparticle analysis.

Fig. Effect of different diluents on mean particle size and particle concentration

Fig. Time scan graph of blank solution from NH₄OH diluent (right) and from Triton X-100 diluent (left).

The TiO₂ RM diluted with a mixture of 1% Triton X-100+ NH_4OH was similar with diluted with only 1% Triton X-100:

When the sample was pre-treated by microwave digestion, NH_4OH as a diluent can get a better dispersion of TiO₂ NPs. In the case of the pretreatment using the direct dilution method, compared to the method of directly diluting with Triton X-100, the best result is obtained as the mixture of NH_4OH and Triton X-100 because NH_4OH makes the alkaline diluent.

In the future, in the actual sample analysis, ICP-MS can be used for ion concentration analysis to obtain a more suitable dilution ratio for each sample, making the SOP of TiO_2 NP of spICP-MS more feasible.

References

1. S. Wilbur, M. Yamanaka and S. Sannac, Agilent publication, 2015, 5991-5516EN.

2. F. Loosli, P. L. Coustumer, S. Stoll, Water Research, 2013, 6052-6063.