

Instrument: CS744

Carbon and Sulfur Determination in High Carbon Ferroalloys

LECO Corporation; Saint Joseph, Michigan USA

Introduction

Ferroalloys are alloys of iron that contain a high level of one or more additional primary elements. The principle ferroalloys consist of silicon, manganese, and chromium and are used as vehicles to get the alloying element into the molten metal when making steel or cast iron. For example, silicon is used to deoxidize steel and as an alloying element in cast iron. Manganese is used as an alloying element and mitigates the harmful effects of sulfur in cast iron and steel. Chromium increases corrosion resistance in stainless steels. Since carbon is the most important alloying constituent in steel and cast iron production, and sulfur is a harmful contaminant that negatively affects the mechanical properties of steel and cast iron, the determination of carbon and sulfur levels in the ferroalloy feed stock is a critical quality control parameter.

Sample Preparation

Samples should be a uniform, representative, powder, or granular material.

Accessories

528-018 or 528-018HP Crucible (previously heated*); 763-266 LECOCEL, 501-078 Iron Powder, 501-636-HAZ V₂O₅ Accelerator; 773-579 Metal Scoop; 761-929 Tongs

**For optimal precision, ceramic crucibles are heated in a muffle or tube furnace (such as a LECO TF-4) at 1350 °C for a minimum of 20 minutes, or at 1000 °C for 40 minutes. The crucibles are removed from the furnace, allowed to cool for 1 to 2 minutes, and then are transferred to a desiccator for storage. Crucibles should be reheated if not used within four hours. After baking, crucibles should only be handled using clean tongs.*

Reference Materials

LCRM®, LRM®, NIST, or other suitable reference materials, such as ferroalloy and steel reference materials.

Method Selection

The method utilizes iron powder, vanadium pentoxide, and LECOCEL as accelerators to facilitate combustion. This accelerator combination works well for ferroalloys and may improve sulfur recovery and precision. Even though the carbon blank for this method is considered high, the blank is consistent enough to be properly removed from the analysis results. Vanadium pentoxide is considered a hazardous material.

Method Parameters

Analysis Parameters

Purge Time	10 s
Analysis Delay	20 s
Sample Cool Time	0 s
Furnace Mode	Constant
Furnace Power	100%
Furnace Ramp Rate	0

Element Parameters

Element	Carbon	Sulfur
Integration Delay	0 s	0 s
Starting Baseline	2 s	2 s
Use Comparator	Yes	Yes
Comparator Level	1.00%	1.00%
Minimum Integration Time	40 s	40 s
Maximum Integration Time	70 s	70 s
Significant Digits	5	5

Procedure

1. Prepare the instrument as outlined in the operator's instruction manual.
2. Determine the instrument blank.
 - a. Login a minimum of three Blank replicates.
 - b. Add ~0.4 g of 501-078 Iron Powder and ~0.6 g of 501-636-HAZ V₂O₅ to a previously heated crucible and thoroughly mix.
 - c. Add ~1.5 g of 763-266 LECOCEL to the crucible, covering the accelerators.
 - d. Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable), and initiate analysis.
 - e. Repeat steps 2b through 2d a minimum of three times.
 - f. Set the blank by following the procedure outlined in the operator's instruction manual.
3. Calibrate/Drift Correct.
 - a. Login a minimum of three Standard replicates.
 - b. Add ~0.4 g of 501-078 Iron Powder and ~0.6 g of 501-636-HAZ V₂O₅ to a previously heated crucible and thoroughly mix. Tare the crucible and accelerators.
 - c. Weigh ~0.25 g of an appropriate calibration/drift reference material into the crucible and thoroughly mix.
 - d. Enter the mass and sample identification into the appropriate replicate fields.
 - e. Add ~1.5 g of 763-266 LECOCEL to the crucible, covering the reference material and accelerators.
 - f. Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable) and initiate analysis.
 - g. Repeat steps 3b through 3f a minimum of three times for each calibration/drift reference material intended for calibration/drift.

- h. Calibrate/drift correct by following the procedure outlined in the operator's instruction manual.
- i. Verify the calibration by analyzing ~0.25 g of another suitable reference material following steps 3b though 3f and confirm that the results are within an acceptable tolerance.

4. Sample Analysis.

- a. Login a sample with an appropriate number of replicates.
- b. Add ~0.4 g of 501-078 Iron Powder and ~0.6 g of 501-636-HAZ V_2O_5 to a previously heated crucible and thoroughly mix. Tare the crucible and accelerators.
- b. Weigh ~0.25 g of a ferroalloy sample into the crucible and thoroughly mix.
- c. Enter the mass and sample identification into the appropriate replicate fields.
- d. Add ~1.5 g of 763-266 LECOCEL to the crucible, covering the sample and accelerators.
- e. Place the crucible on the furnace pedestal (or appropriate autoloader position if applicable), and initiate analysis.
- f. Repeat steps 4a through 4e as necessary.

Typical Results*

Sample	Mass (g)	% Carbon	% Sulfur
NIST 64c	0.2500	4.708	0.0681
High Carbon	0.2479	4.701	0.0667
Ferro-Chromium	0.2490	4.715	0.0676
$4.698 \pm 0.040\%$ C	0.2495	4.715	0.0672
$0.0673 \pm 0.0034\%$ S	0.2492	4.702	0.0665
	0.2489	4.723	0.0664
	0.2510	4.708	0.0669
	0.2499	4.715	0.0672
	0.2488	4.718	0.0666
	0.2494	4.705	0.0667
Avg =	4.711	0.0670	
s =	0.007	0.0005	
BCS 204/4	0.2496	5.631	0.0099
High Carbon	0.2483	5.620	0.0100
Ferro-Chromium	0.2590	5.602	0.0100
5.62% C	0.2493	5.624	0.0099
0.010% S	0.2487	5.596	0.0100
	0.2502	5.602	0.0103
	0.2501	5.639	0.0101
	0.2510	5.628	0.0100
	0.2503	5.632	0.0102
	0.2479	5.627	0.0104
Avg =	5.620	0.0101	
s =	0.015	0.0002	

*Results based upon linear, forced through origin calibrations utilizing BCS 204/4 High Carbon Ferro-Chromium @ 5.62% C and NIST 64c High Carbon Ferro-Chromium @ 0.0673% S.

LECO Corporation | 3000 Lakeview Avenue | St. Joseph, MI 49085 | Phone: 800-292-6141 | 269-985-5496
 info@leco.com • www.leco.com | ISO-9001:2015 Q-994 | LECO is a registered trademark of LECO Corporation.
 LCRM = LECO Certified Reference Material; LRM = LECO Reference Material and are registered trademarks of LECO Corporation.