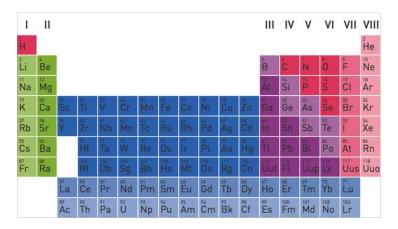


Analysis of HC with Complementary Spectroscopic Methods

Dr. Johannes Hesper Shimadzu Europe GmbH

Spectroscopic Methods


FTIR, UV-Vis, RF

EDX, AAS, ICP-AES, ICP-MS

elements

N = 1

Spectroscopic Methods

Molecular

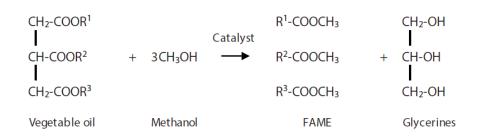
FTIR, UV-Vis-NIR, RF

- FAME in Bio-Diesel
- Soot in Oil
- Total petroleum hydrocarbons
- Oil in water
- Additives in Polymers
- Coumarin in Diesel
- Aged Polymers
- Etc.

Elemental

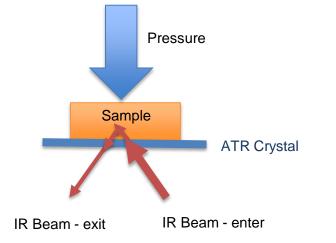
EDX, AAS, ICP-AES, ICP-MS

- Wear Metals in Oil
- Sulfur in Oil
- Lead, As in Gasoline
- Trace Elements in Petroleum naphtha, gasoline, Marine fuel, fuel oil, heavy oils
- Etc.

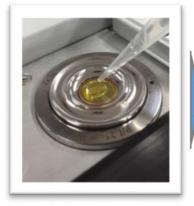

FTIR

IRSpirit

Fatty Acid Methyl Ester in Bio-Diesel


Biodiesel fuel is produced through the conversion of fats and oils into fatty acid methyl esters (FAME) by the process of methyl esterification, in which glycerin is removed.

ATR = Attenuated total reflection



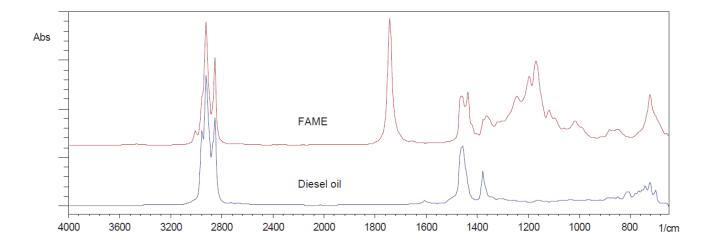
IRSpirit-T with QATR-S

ATR = Attenuated total reflection

• Typical procedure

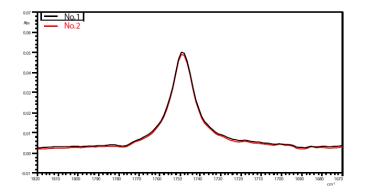
Drip liquid sample

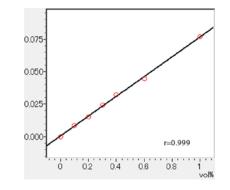
Cover with window from above



Pearl[™] Liquid FTIR ATR Accessory

ATR = Attenuated total reflection


• ATR FTIR Spectra of FAME and Petroleum Diesel


FAME Quantitation by ATR-FTIR

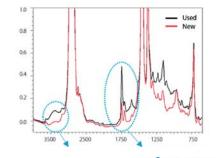
Quantitation of FAME using the peak height @ 1,747.82 cm-1

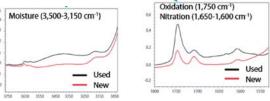
Peak of Carbonyl Group Used in Quantitation of FAME, 0.6 vol%

	Absorbance Abs	FAME concentration [vol%]
1 st measurement	0.047	0.593
2 nd measurement	0.046	0.590
Measurement error	0.001	0.003

FAME concentration [vol%]	Absorbance Abs	
0.1	0.008	
0.2	0.015	
0.3	0.024	
0.4	0.032	
0.6	0.045	
1.0	0.077	

🕀 SHIMADZU


Lubricant and Additive Degradation

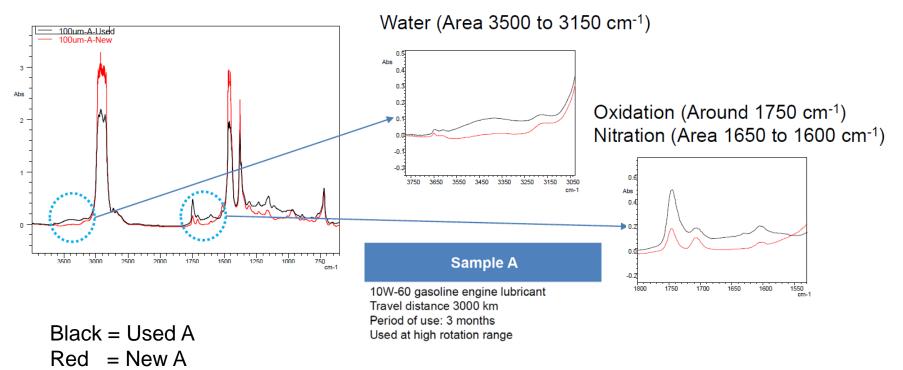

FTIR Degradation Analysis

Typical degradation by thermal + physical stress

- Water/Moisture
- Oxidation
- Nitration

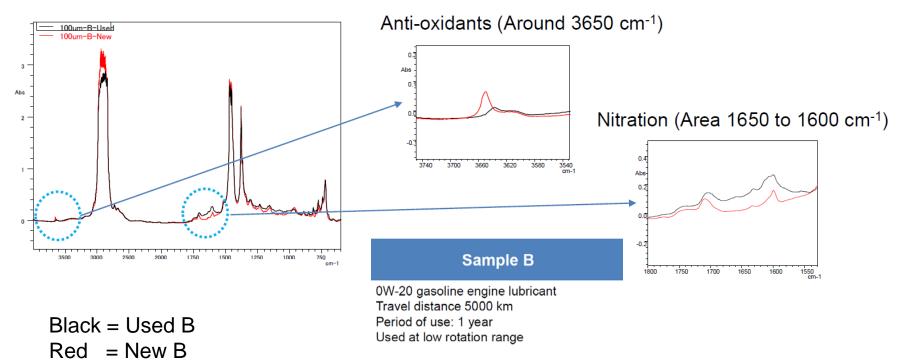
Specac Pearl™ Liquid Analyzer

🕀 SHIMADZU


2x Oil Samples

Sample A	Sample B
10W-60 gasoline engine lubricant	0W-20 gasoline engine lubricant
Travel distance 3000 km	Travel distance 5000 km
Period of use: 3 months	Period of use: 1 year
Used at high rotation range	Used at low rotation range

By analyzing lubricants at known wavelengths for O-H (water), C-O (oxidation), and C-N bonds, (nitration) among others, qualitative and quantitative assessment can be quickly performed on lubricant samples using the IRSpirit.


SHIMADZU

Sample A

Sample B

Conclusion

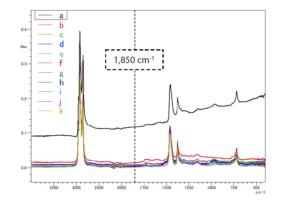
Degradation Analysis

- Evaluations of lubricants by FTIR are simple and do not require Sample pretreatment. Efficient work is possible by using ATR technique.
- ATR = Cleaning is easy in comparison with conventional liquid cells.
- ATR = Optical path length with high accuracy, data with good reproducibility can be obtained in measurements based on ASTM E2412.

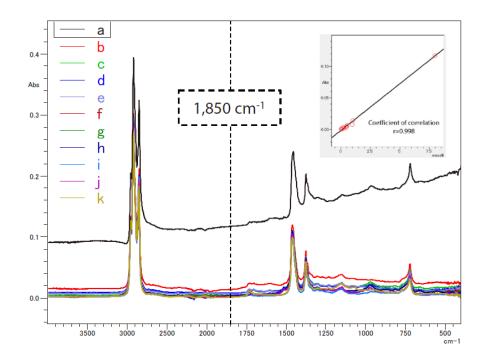
Soot in Engine Oil

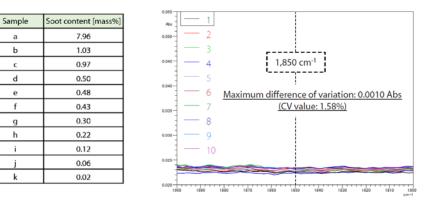
Soot:

Incomplete combustion of fuels results in the production of soot, carbonrich Particulates.



Soot Measurement


Enlarged View of ATR Prism Plate (with Drop of Engine Oil in Center)



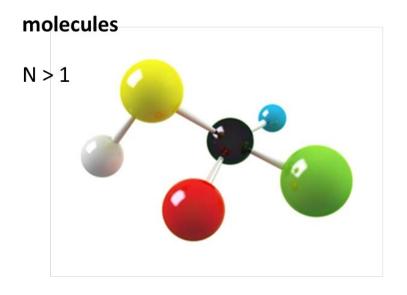
Sample	Soot content [mass%]
а	7.96
b	1.03
с	0.97
d	0.50
e	0.48
f	0.43
g	0.30
h	0.22
i	0.12
j	0.06
k	0.02

List of Stds for Calibration Curve

Soot Measurement at 1850 cm-1

10x Infrared Spectrum for 0.20 Mass% Soot Content

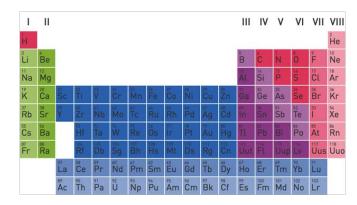
Sample	Absorbance	Quantitation value [mass%]	Reference value [mass%]
Х	0.008	0.65	0.60
Y	0.004	0.43	0.45
Z	0.001	0.18	0.02



FTIR for HPI

• The analysis of lubricants by FTIR does <u>not</u> require sample pretreatment, and the ATR technique makes it easy and quick for each analysis.

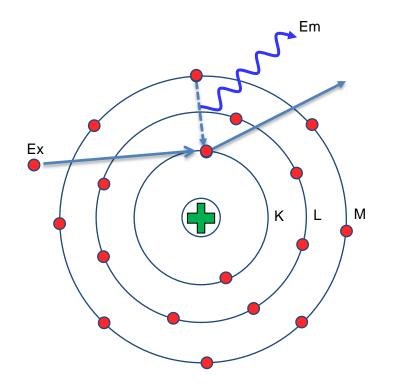
Spectroscopic Methods


FTIR, UV-Vis-NIR, RF

EDX, AAS, ICP-OES, ICP-MS

elements

N = 1



Additive Elements and Wear Metals Analysis

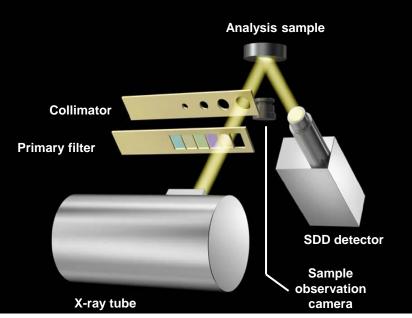


• Elemental analyses for additives and wear metals in lubricating oils by ED-XRF

X-Ray Fluorescence

- Characteristic emission
- Two detection principles
 - Energy-dispersive \rightarrow **EDX**
 - Wavelength-dispersive

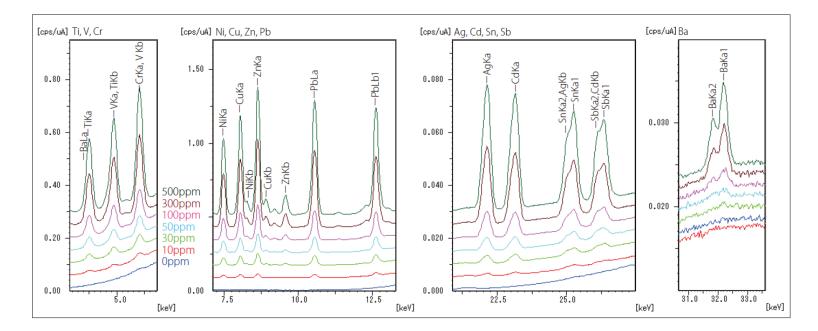
SHIMADZU


Quant. Analysis of Waste Oil by ED-XRF

- Waste oil can quickly and easily be analyzed by EDX.
- Analysed Elements: Ti, V, Cr, Ni, Cu, Zn, Ag, Cd, Sn, Sb, Ba, Pb

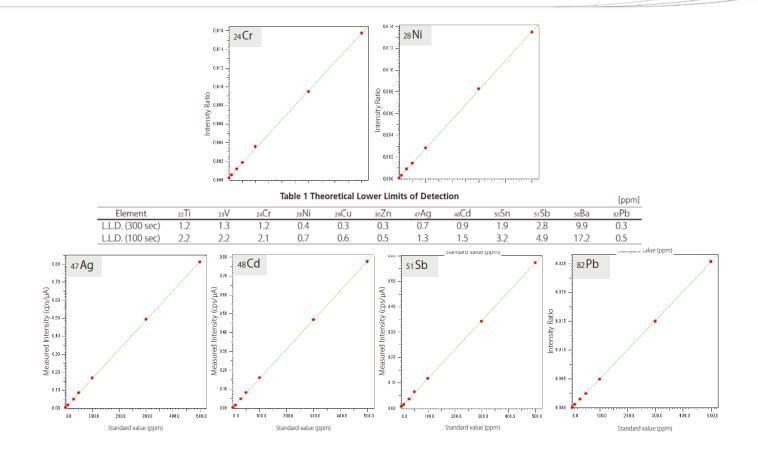
Approximately 8mL of waste oil sample (each 10, 30, 50, 100, 300, 500 ppm)

Optical System EDX-7000P



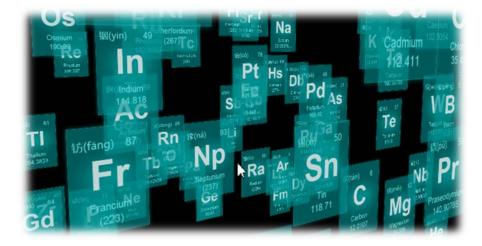
Analytical Conditions

Instrument Elements Analytical Group X-ray Tube Tube Voltage [kV]		Collimator[mmф] :10 Primary Filter :#1, #2, #4 Atmosphere : Air Detector :SDD Integration Time[sec] :100, 300 Deced time [9(1) : May 20	
Current [µĂ]	: Auto	Dead time [%] : Max. 30	


SHIMADZU

X-Ray Fluorescense Spectra

Oil Samples: 0, 10, 30, 50, 100, 300, 500 ppm


LLD 100 sec and 300 sec

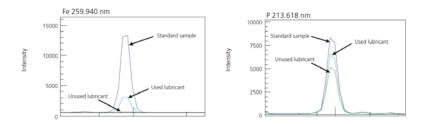
Plasma ICP

ICP-AES

Sample: <u>Used</u> automotive lubricants (Used for approximately 4000 km) and <u>new</u> lubricants were analyzed.

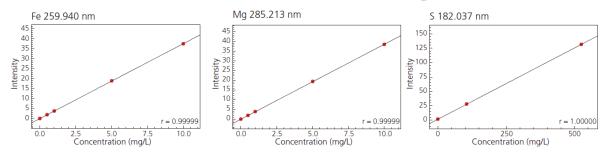
Lubricating Oil

Additive Elements, Wear Metals, and Contaminants:


Analysis of 22 x elements (Al, Ba, B, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Mo, Ni, P, K, Si, Ag, Na, S, Sn, Ti, V, Zn) specified according to the ASTM standard D5185.

Instrument Radio Frequency Power	
Plasma Gas Flowrate	: 16.0 L/min
Auxiliary Gas Flowrate	
Carrier Gas Flowrate	: 0.70 L/min
Sample Introduction	: Nebulizer, 10UES
Misting Chamber	: Organic solvent chamber
Plasma Torch	: Torch
Observation	: Radial (RD)

🕀 SHIMADZU


Some Spectral Profiles

• Spectral Profile Fe and P

ICPE-9820: dissolved elements in used lubricating oil can be stably analyzed without the introduction of oxygen.

• Calibration Curves of Fe, Mg and S

() SHIMADZU

Analytical Result of Lubricant Oil

Element	Used lubricant (µg/g)	Used lubricant spike recovery rate (%)	Used lubricant dilution test (%)	Unused lubricant (μg/g)	Detection limit (µg/g)
Ag	<	100	-	<	0.02
AI	10	101	-	6.51	0.3
В	65.9	-	98	121	-
Ba	0.123	101	-	<	0.02
Ca	3970	-	98	2250	-
Cr	1.03	101	-	<	0.01
Cu	0.65	100	-	<	0.02
Fe	10.8	101	-	0.43	0.01
К	22.1	99	-	<	0.6
Mg	10.4	100	-	5.48	0.02
Mn	0.618	101	-	0.139	0.002
Mo	184	-	98	183	-
Na	2.5	100	-	<	0.4
Ni	<	102	-	<	0.05
Р	756	-	99	731	-
Pb	<	100	-	<	0.5
S	3980	-	100	3810	-
Si	8.96	103	-	5.07	0.03
Sn	<	100	-	<	0.5
Ti	<	100	-	<	0.01
V	<	103	-	<	0.02
Zn	872	-	97	882	-

Result ICPE-9800

- Excellent results near 100 % were obtained in the dilution test for the highconcentration elements and the spike-and-recovery test for the lowconcentration elements, both with respect to the used lubricants.
- Using the ICPE-9820, dissolved elements in used lubricants can be analyzed stably <u>without</u> the introduction of oxygen.

Conclusion

- Analysis of lubricant can be obtained by using FTIR and ICP-AES.
- Data conforming to different ASTM Standards can be easily obtained by combining compact IRSpirit and ATR technique.
- Using the ICPE-9820, dissolved elements in lubricants can be analyzed stably without the introduction of oxygen, by low Arconsumption.

Evaluation item/Measurement object		Instrument	ASTM	
	Oxidation			
Degradation	Nitration	FTIR	E2412	
	Sulfonation			
	Moisture	FTIR	F2412	
	Soot			
	Gasoline	GC	D3525 D7593	
		FTIR	E2412	
Contamination	Diesel	GC	D3524 D7593	
contamination		FTIR	E2412	
	Coolant (D. No. K)	ICP-AES	D5185	
	Coolant (B, Na, K)	FTIR	E2412	
	Antifreeze (Na)		D5185	
	Dust (Si)	ICP-AES		
	Sealant (Si)	1		
Wear	Metal (Al, Fe, Cu, Cr, Ni, Zn, etc.)	ICP-AES	D5185	
	Antioxidant	ICP-AES	D4951	
	(Zn, Cu, B)	FTIR	E2412	
	Anti-wear agent	ICP-AES	D4951	
Additives	(B, Cu, K, S, Žn, etc.)	FTIR	E2412	
	Surfactant (Ba, Mg, Ca, etc.)			
	Corrosion inhibitor (Ba, Zn)	ICP-AES	D4951	
	Anti-rust agent (K, Ba)	1		
	Lubricant (Mo)	1		

() SHIMADZU

Shimadzu Europa GmbH

Thank You!

Have a nice 30 Min. Lunch Break 😊