FTIR SPECTROSCOPY REFERENCE GUIDE

INTRODUCTION

Infrared spectroscopy is the study of the interactions between infrared electromagnetic energy and matter. The technique of infrared spectroscopy measures the vibrations of molecules, allowing for qualitative and quantitative measurements of samples. A Fourier transform infrared (FTIR) spectrometer is an ideal tool for the identification of unknown organic and inorganic samples whether they exist in the form of a gas, liquid or a solid.

ELECTROMAGNETIC SPECTRUM

Radiation in the infrared region is commonly referred to in terms of a unit called a wavenumber (\overline{v}), rather than wavelength (λ). Wavenumbers are expressed as reciprocal centimeters (cm⁻¹) and are the preferred unit as they are directly proportional to energy. A higher wavenumber corresponds to a higher energy.

Convert a wavenumber (\overline{v}) to a wavelength (λ) by using the following formula:

$$\overline{\mathbf{v}}$$
 (cm⁻¹) = $\frac{1}{\lambda}$ (cm)

Convert a wavenumber (\overline{v}) to Energy (E) by multiplying it by the speed of light (c, in centimeters per second) and Planck's constant (h):

 $E (J) = h (J.s) \times c (cm.s^{-1}) \times \overline{v} (cm^{-1})$

A portion of the electromagnetic spectrum showing the relationship of the infrared region to other types of radiation (not shown to scale). The relationship between energy, wavenumber, and wavelength is also highlighted.

COLLECTING AN FTIR SPECTRUM

There are three quick, simple steps involved in obtaining a spectrum of a sample:

STEP 1 Record a spectrum with no sample present. (Known as a 'background'.)

STEP 2 Insert the sample into the spectrometer.

STEP 3 Record a second spectrum and interpret the data.

The key collection parameters are:

- The number of scans (background and sample)
- The scan range
- The spectral resolution.

In general increasing the number of scans that are co-added improves the signal-to-noise ratio of the spectrum and can assist in the analysis of weakly absorbing samples. The spectral resolution is user-defined and helps to distinguish closely spaced absorption peaks, and is expressed in wavenumbers.

The simplified correlation table on the right allows users to extract structural information from IR spectra. Computer-based search programs are also available for assisting in compound identification.

CARY 600 SERIES

Reference laser

Beamsplitter storage

Detector

Sample compartment

Bon C₋H

C=C

 $C \equiv C$ C = 0

SPECTROMETER OPTICS

INTERPRETING SPECTRA

Type of Vibration		Wavenumber Range (cm ⁻¹)	Bond	Type of Vibration	Wavenumber Range
Alkane –CH ₃	(stretch) (bend)	3000 – 2850 1450 & 1375	C0	Alcohols, esters, ethers, carboxylic acid, anhydrides	1300 – 1000
–CH ₂ – Alkene Aromatic	(bend) (stretch) (out-of-plane bend) (stretch) (out-of-plane bend) (stretch)	$\begin{array}{l} 1465 \\ 3100 - 3000 \\ 1000 - 650 \\ 3150 - 3050 \\ 900 - 600 \\ \sim 3300 \\ 2900 - 2700 \end{array}$	0–H	Alcohols, phenols Free H-Bonded Carboxylic acids	3650 — 3600 3400 — 3200 3400 — 2400
Alkyne Aldehyde			N—H	Primary & secondary amines & amid (stretch) (bend)	es 3500 - 3100 1640 - 1550
Alkene Aromatic		1680 — 1600 1600 & 1475	C–N C=N	Amines Imines & oximes	1350 – 1000 1690 – 1640
Alkyne		2250 – 2100	C≡N	Nitriles	2260 - 2240
Aldehyde		1740 - 1720	N=0	Nitro (R–NO ₂)	1550 & 1350
Carboxylic a	cid	1725 – 1705 1725 – 1700	S-H	Mercaptans	2550
Ester Amide Anhydride	Ester 1750 – 1730 Amide 1680 – 1630 Anhydride 1810 & 1760		C–X	Halides Fluoride Chloride Bromide, iodide	1400 — 1000 785 — 540 < 650

Agilent Technologies

The Measure of Confidence

SPECTRAL RANGE COVERAGE

Spectral range coverage for common sources, beamsplitters, and detectors. The combination of these components generate a spectrometer's working scan range. Detectors Sources

Vavenumhers (cm⁻¹)

Interferometer

Infrared source

Beamsplitters

R446 Photomultiplier Tube 54,000 – 11,500 Silicon 18,000 – 8,600 Wavenumbers (cm⁻¹) 50,000 40,000 30,000 20,000 10,000 5,000 0 Silicon 18.000 – 8.600 Wavenumbers (cm⁻¹ 5,000 2,500 1,250 MCT* 12,000 – 450 DLaTGS 18,000 – 150 Multiple MCT detectors (narrow, mid & wide band) are available

35,000 60,000 50,000 **40,000 30,000 20,000 10,000**

THE COMPLETE SOLUTION

Several different accessories facilitate sample preparation and spectral acquisition, including:

- Attenuated Total Reflectance (ATR)
- Diffuse Reflectance
- Specular Reflectance
- Grazing Angle Reflectance
- Microscopy and Chemical Imaging
- ATR Chemical Imaging
- (Micro and Macro)

- Fiber Optic Probes
- PM-IRRAS
- Photoacoustic Spectroscopy
- TGA-FTIR
- GC-FTIR
- GPC-FTIR

A HISTORY OF COMMERCIAL 'FIRSTS'

First commercial FTIR spectrometer		First FTIR microscope	First dy aligned interfer	First dynamically- aligned step-scan interferometer		PA s maging a	series FTIR spectrometers and microscopes	
1969		1982	1992		2001	2	2008	
	1971	199 ⁻		1997		2004	2010	
	First use of MCT detect an FTIR	an First in or in correc micros	nfinity- ted FTIR scope	First Mid- detector s chemical i	IR FPA ystem for imaging	Varian, Inc. acquired Digi	Varian, Inc. ilab acquired by Agilent	

(cm⁻¹)

