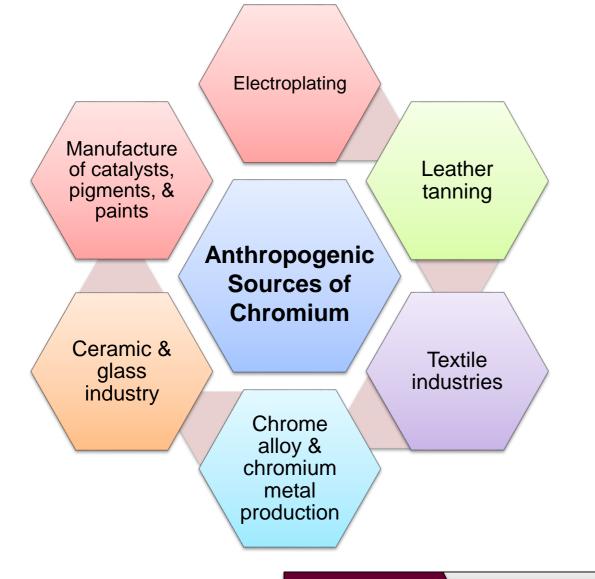

Chromium Speciation of Drinking Waters by IC-ICPMS

Haihan Chen, Jonathan Peters, Hui Guo, and Ruth Marfil-Vega

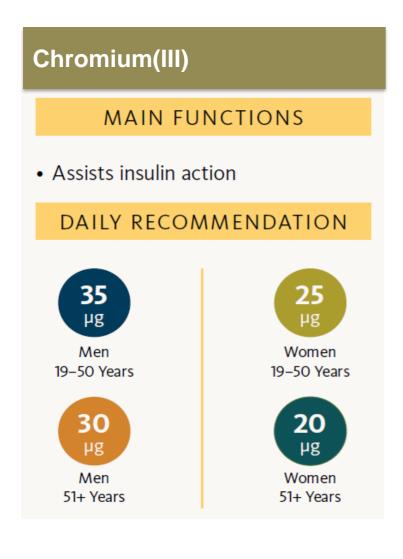
Shimadzu Scientific Instruments


In today's presentation

- 1. Why Chromium speciation?
- 2. Current methods
- 3. New method
- 4. Results
- 5. Conclusions & Benefits
- 6. Q&A

Cr III & Cr VI	Method	Results	Conclusions	Q&A
----------------	--------	---------	-------------	-----

Chromium & Its Sources


- Naturally-occurring element found in rocks, animals, plants, and soil, where it exists in combination with other elements to form various compounds.
- Industrial releases to the air, water, and soil account for the majority of the anthropogenic releases.

(Johnson et al. The contemporary anthropogenic chromium cycle 2006)

Q&A

 Occurs in the soluble state in drinking water and mainly presents as Cr(III) & Cr(VI).

Why Chromium Speciation?

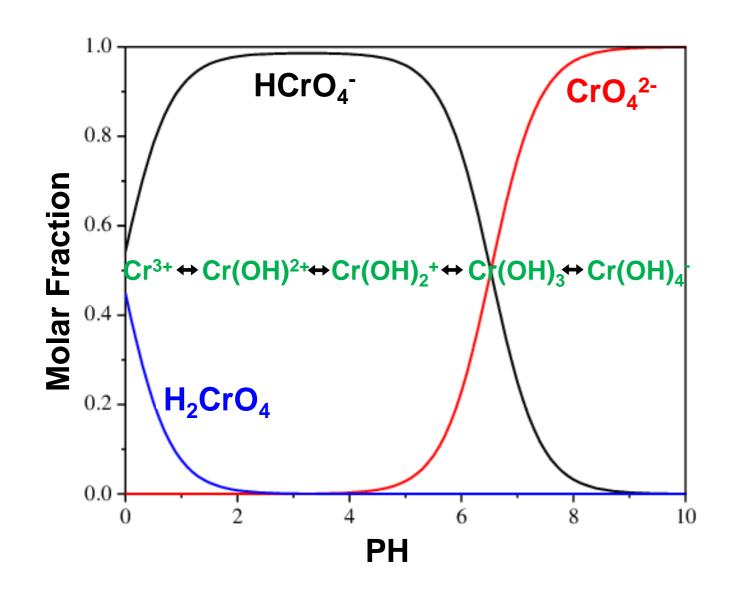
- Cr(III) is an essential human dietary element.
- Cr(VI) is an occupational carcinogen, and a reproductive toxicant, and can cause other health issues.

https://www.atsdr.cdc.gov/csem/chromium/standards_and_regulations.html

Cr III & Cr VI	Method	Results	Conclusions	Q&A
----------------	--------	---------	-------------	-----

Chromium Regulations

Agency	Focus	Level	Comments
American Conference of Governmental Industrial Hygienists	Air: workplace	10 µg/m³ as Cr	Advisory; TWA* to avoid carcinogenic risk from insoluble Cr(VI) compounds
		50 µg/m³ as Cr	TWA for water-soluble Cr(VI) compounds
		500 µg/m³ as Cr	TWA for chromium metal and Cr(III) compounds
National Institute for Occupational Safety and Health	Air: workplace	1 µg/m³ as Cr	Advisory; TWA (10-hour) for chromic acid and all Cr(VI) compounds
		500 µg/m³ as Cr	Advisory; TWA (10-hour) for chromium metal and Cr(II) and Cr(III) compounds
Occupational Safety and Health Administration	Air: workplace	5 µg/m³ as CrO3/m³	Regulation; PEL ⁺ for chromic acid and chromates, (8-hour TWA)
		500 µg/m³ as Cr	PEL for Cr(II) and Cr(III) compounds (8-hour TWA)
		1,000 µg/m³ as Cr	PEL for chromium metal and insoluble compounds (8-hour TWA)
Environmental Protection Agency	Air: environment	Not available	Chromium is listed as a hazardous pollutant
	Drinking water	100 µg/L	Regulation; current MCL‡ for total chromium


- Different regulations established and in development for Total Cr, Cr(III) and Cr(VI).
- EPA currently regulates the total Cr.
 Cr(VI) has been under review since 2008.
- Are new regulations and manufacturing practice about PFAS going to change Cr emissions from electroplating industries?

https://www.cdc.gov/niosh/topics/hexchrom/default.html

SHIMADZU

Chromium Speciation as f(pH)

- Cr(III) typically exists as cationic aqua-hydroxo complexes
- Cr(VI) exists typically as an anionic chromate species

 Interconversion of Cr(III)
 & Cr(VI) depending on sample conditions (pH)

Methods for Chromium Speciation

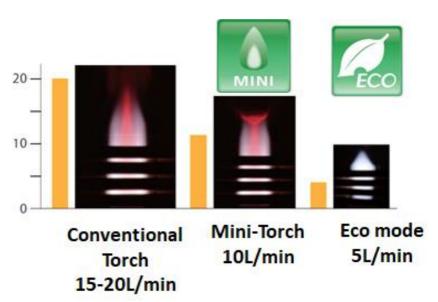
	EPA 7196	EPA 218.7	ISO/CD 24384	New method
Target	Dissolved Cr(VI)	Cr(∨I)	Cr(III) & Cr(∨I)	Cr(Ⅲ) & Cr(Ⅵ)
Method	Colorimetric	IC	LC-ICP/MS	IC-ICP/MS
Samples	EP/TCLP extracts, groundwater, domestic and industrial waste (limited)	Drinking water	Wastewater, surface water, groundwater, or tap waters	Continue in
DL	ppm	ppt	ppt	this
Limitations	InterferencesLaborious sample prepLack of sensitivity	 Post-column derivatization required 	 Chelating pre- treatment Laborious sample prep 	presentation!

Cr III & Cr VI	Method	Results	Conclusions	Q&A
----------------	--------	---------	-------------	-----

Instrumentation

All analyses were run on a IC coupled to ICPMS.

- The ICPMS is equipped with a collision cell that uses helium (He) to discriminate polyatomic interferences based on kinetic energy.
- Cr was analyzed at 52 m/z with He gas on to remove polyatomic interferences such as ArC and CIOH.



Shimadzu ICPMS-2030

Instrumentation – Inductively Coupled Plasma Mass Spectrometry (ICPMS)

Operating Conditions of ICPMS

Parameter	Setting	Parameter	Setting
Radio Freq. Power	1.20 kW	Mix Gas	0.00 L/min
Sampling Depth	5.0 mm	Cell Gas	6.0 mL/min
Plasma Gas	8.0 L/min	Cell Voltage	-21 V
Auxiliary Gas	1.10 L/min	Energy Filter	7.0 V
Carrier Gas	0.70 L/min	Chamber Temp.	5°C

An LC fittings kit was used to connect IC tubing directly to the nebulizer.

🕀 SHIMADZU

Instrumentation – Ion Chromatography (IC)

□ The IC was configured with an inert flow path.

Optimization Studies for Chromatographic Separation of Cr(III) and Cr(VI)

Parameter	Setting	Parameter	Setting
Column	Shodex [™] VC-50 2D	Separation Scheme	Isocratic
Mobile Phase	6-9 mM HNO ₃	Column Temp.	30-50°C
рН	2-3	Injection Volume	5-100 μL
Flow Rate	0.1-0.3 mL/min	LC Vials	Plastic, 1.5 mL

Shimadzu Prominence IC

Method - Sample Preparation

□ Samples analyzed directly without any pretreatment

- Tap water
- Well water
- Commercially available mixed standards of 22 elements
- Spiked samples

Chromium standards

 Diluting 1000 mg/L stock solutions of trivalent and hexavalent chromium in deionized water

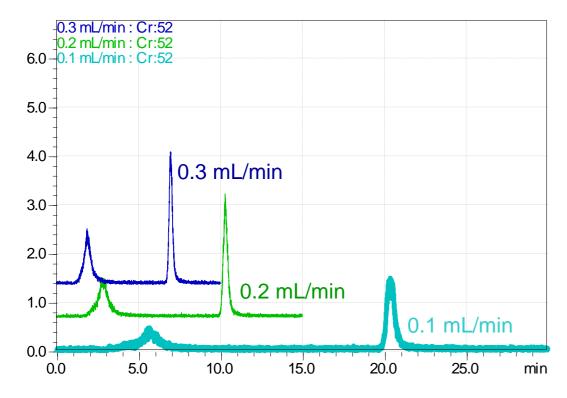
Method

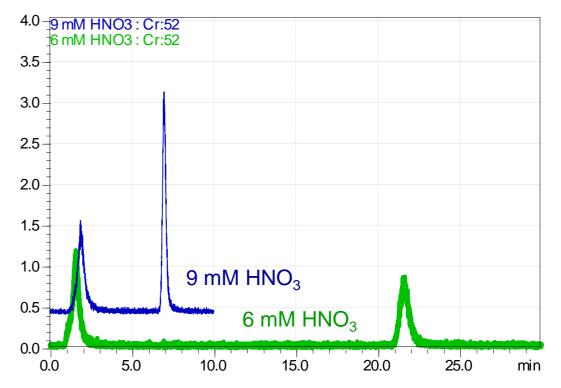
Results

Conclusions

□ Mobile phase HNO₃

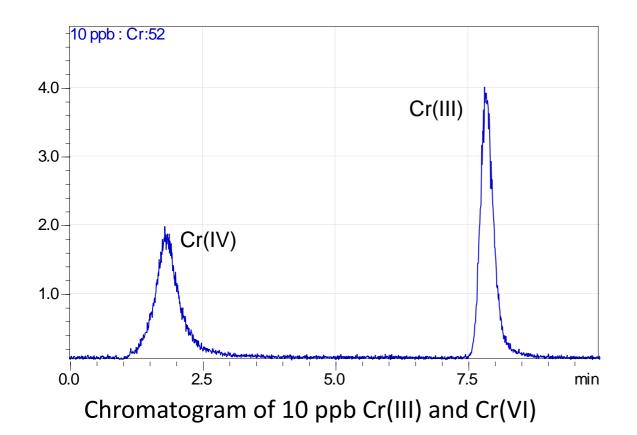
Made from trace metal grade concentrated HNO₃


Cr III & Cr VI



Q&A

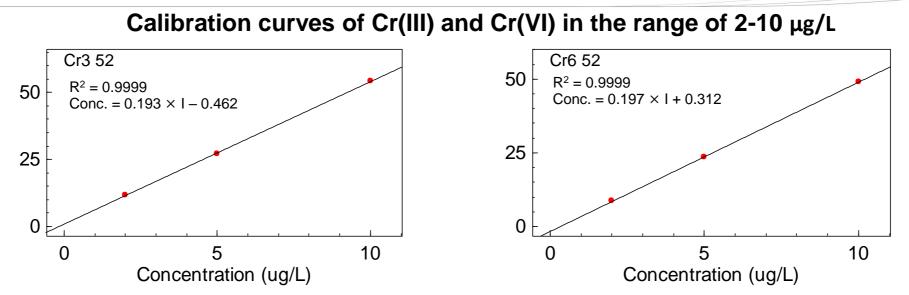
Results – Optimized Chromatographic Conditions


Chromatograms at different flow rates

Chromatograms with different concentrations of mobile phase

Cr III & Cr VI	Method	Results	Conclusions	Q&A
----------------	--------	---------	-------------	-----

Results – Optimized Chromatographic Conditions


Chromium species, Cr(III) and Cr(VI), are well separated and elute within 10 minutes.

Operating Conditions of IC

Parameter	Setting
Column	Shodex [™] VC-50 2D
Separation Scheme	Isocratic
Mobile Phase	9mM HNO ₃
Column Temp.	50°C
рН	2.0
Injection Volume	20 μL
Flow Rate	0.3 mL/min
LC Vials	Plastic, 1.5 mL

Cr III & Cr VI Amethod	Results	Conclusions	Q&A
------------------------	---------	-------------	-----

Results – Calibration Curves

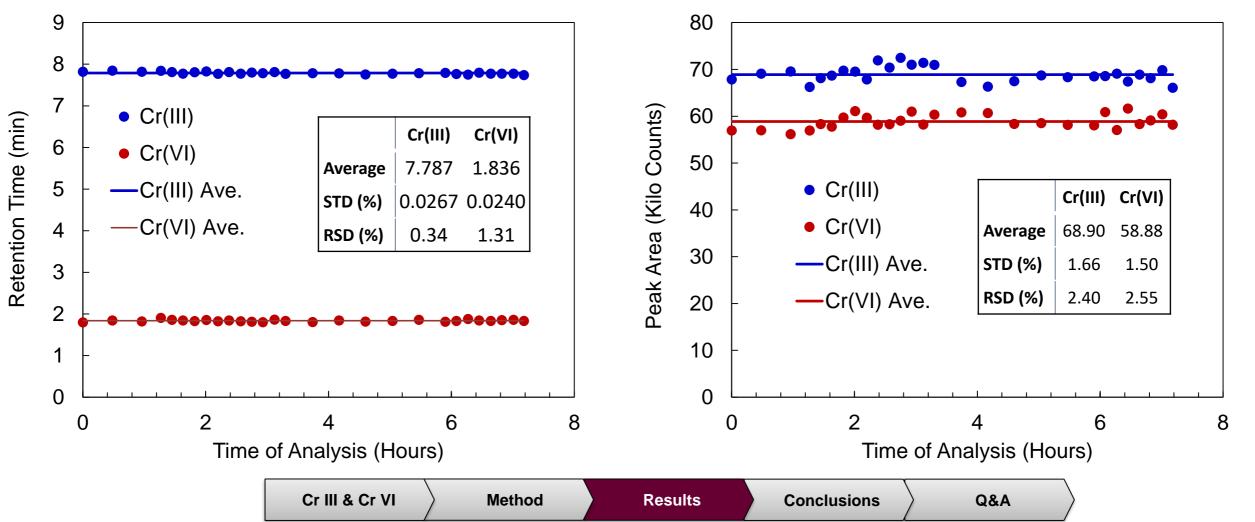
Characteristics for Chromium Speciation Determined

	Cr(III)	Cr(VI)
Retention Time (min)	7.79	1.84
Limit of Detection (µg/L)	0.20	0.35
Limit of Quantitation (µg/L)	0.67	1.67
Correlation Coefficient (R ²)	0.9999	0.9999
Equation	Conc. = 0.193 × I -0.462	Conc. = 0.197 × I + 0.312
Residual Range (µg/L)	-0.005 - 0.001	-0.03 - 0.02
Relative Standard Error (RSE, %)	0.05	1.22

Cr III & Cr VI	> Method	Results	Conclusions	Q&A
----------------	----------	---------	-------------	-----

Results – Sample Analysis

Concentrations of Cr in μ g/L in Original and Fortified Samples as well as Recovery Yields in Percent


Sample	Cr(III)	Cr(VI)
Tap water	n.d.	n.d.
Fortified tap water	5.05	5.16
Recovery (%)	101	103
Well water	n.d.	0.738
Spiked well water	5.15	5.61
Recovery (%)	103	97
Commercial Standard	3.92	n.d.
Fortified commercial standard	9.06	4.77
Recovery (%)	103	95

n.d. = not detected. $Cr(III) < 0.20 \ \mu g/L$, $Cr(VI) < 0.35 \ \mu g/L$.

Cr III & Cr VI Ameth	d Results	Conclusions	Q&A
----------------------	-----------	-------------	-----

Results – Instrument Stability & Precision

Variation of Retention Time for Multiple Injection of 10 µg/L Cr(III) and Cr(VI) Standard Over 7 Hours

Hours

Variation of Peak Area for Multiple Injection of

10 µg/L Cr(III) and Cr(VI) Standard Over 7

Conclusions

- ICPMS coupled with IC provides excellent sensitivity, precision, accuracy, stability, fast time response and high sample throughput for determination of chromium speciation in waters.
- The use of 9 mM nitric acid other than salt solutions as mobile phase reduces background signal and possible interference.
- The use of a column to separate both cations and anions enables fast separation of chromium speciation without any sample pretreatment with complexing agents.
- Eliminating sample preparation avoids any possible risk of contamination as well as maximizes sample throughput.

Haihan Chen, Ph.D. Product Coordinator Shimadzu Scientific Instruments hachen@shimadzu.com

at the second se				
Cr III & Cr VI	> Plan	Results	Conclusions	Q&A