Screening for Pesticide Residues in Cannabis using a High Resolution Accurate Mass GC/Q-TOF and a Highly Sensitive GC/QQQ

Philip L. Wylie and Jessica Westland Agilent Technologies Wilmington, DE Cannabis Science Conference POSTER # P91

Introduction

Recent Headlines about Pesticides in Cannabis

"First tests are in, and 1 in 5 marijuana samples in California isn't making grade" *The Orange County Register,* July 25, 2018

"Vape Company Fails Pesticide Test, Issues First Product Recall in Legal Market" *Merry Jane, Tuesday, August 21, 2018*

"Regulators investigating Maryland medical marijuana grower for alleged pesticide use" *The Baltimore Sun, August 21, 2018*

"Toxic pesticide use rising at illegal California pot farms" The associated Press, May 29, 2018

Objectives

- Study different extraction procedures for pesticide residues
- Observe the effects of diluting extracts 500:1
- Spike cannabis samples with CA + OR pesticides; extract, dilute and analyze by Agilent 7010 GC/TQ and Agilent 7250 GC/Q-TOF

Experimental	Spike 66 CA
Extraction Procedure	+ OR Pesticides
ACN Extraction	
Weigh ~1.0 g of sample into a 50-mL centrifuge	e tube
Add ceramic homogenizer, cap the tube, and m minutes (1,500 strokes/min)	echanically shake it for 2
Add 15 mL of acetonitrile (ACN) to each tube	
Spike Surrogate Standards	
Cap the tube, and mechanically shake for 2 mir	nutes Iry 2
(1,500 strokes/min)	different SPE
	cleanups /
Transfer solvent to unconditioned SPE Cartridge	e

Experimental

GC/TQ and GC/Q-TOF Analysis

An Agilent 7890/7010 GC/TQ was used to analyze matrix matched calibration standards and extracts. Of the 66 spiked compounds, 46 could be analyzed by the GC/TQ. The others require LC/TQ. This method has been published [1].

Figure 1. Agilent 7890/7010 GC/TQ (L) and 7890/7250 GC/Q-TOF (R). Configuration for mid-column backflushing (top). Instrument Conditions

Select GC/TQ Conditions	
Column 1	Agilent HP-35MS, 15 m x 0.25 mm x 0.25 µm
Column 2	Agilent HP-5MS, 15 m x 0.25 mm x 0.25 µm
Column flow rates	col 1 = 1.2 mL/min, col 2 = 1.25 mL/min
Oven Temp program	70 °C (1 min), 35°C/min to 180°C (0 min), 10°C/min to 200°C (0 min), 8°C/min to 300°C (4.5 min)
Injection volume	2 µL splitless
Sandwich Injection	L1 = Standard in solvent; L2 = Clean cannabis extract
TQ mode	MRM
Select GC/Q-TOF Conditions	
Column 1 and 2	Agilent HP-5MS UI, 15 m x 0.25 mm x 0.25 µm
Column flow rates	col 1 = 1.094 mL/min, col 2 = 1.294 mL/min
Oven Temp program	60°C (1 min), 40°C/min to 170°C (0 min), 10°C/min to 310°C (3 min)
Injection volume	2 µL cold splitless
Q-TOF mode	TOF Only

Results and Discussion

Results and Discussion

Identifying Pesticides using GC/Q-TOF with the Find by Fragments Algorithm in MassHunter Qualitative SW

Figure 3. Agilent MassHunter Find by Fragments results for Diazinon at 5 ppb after C18 SPE and dSPE. 1) Number of qualified peaks, 2) How well ion ratios match database spectrum, 3) Fragment mass accuracy, 4) Mass accuracy for [M*]⁺, 5) Difference between database and measured RT, 6) Extracted ions, 7) Coelution plot, 8) Molecular ion isotope pattern.

Targeted pesticide analysis by GC/TQ. 46 Pesticides found with reasonable ($R^2 \ge 0.99$) calibration curves (Some with quadratic fit)

Cleanup comparison

Figure 2 shows GC/TOF TICs for three different extracts. All used the C-18 SPE. Figure 2A shows the cannabis extract after the 25:1 dilution. Figures 2B and 2C show the extracts with & without dSPE (respectively) & after a further 20:1 dilution.

Figure 2. GC/Q-TOF TICs of cannabis extracts A) after C18 SPE with 25:1 dilution, B) C18 SPE + dSPE & 500 X total dilution, and C) C18 SPE & 500 X total dilution (equivalent to 1 g cannabis in 500 mL/ACN).

Processed Canna_CAL_L3_003 Pyridaben 24 Samples (24 total) AGILENT\lfs-wylie

Figure 4. MRMs (quant + 2 qualifiers) & calibration curves (4.5 – 450 ppb) for Chlorfenapyr and Pyridaben in cannabis matrix.

Conclusions

- Our assumption is that illegal pesticides will be used, sometimes on legal cannabis and often on black market cannabis.
- Our best sample prep method (so far) for GC/TQ: C18 SPE + dSPE (50 mg PSA, 50 mg C18EC, 7.5 mg GCB, 150 mg MgSO4) + 500:1 dilution.
- GC/Q-TOF may require less dilution 20:1 or 25:1. Experiments planned.
- Of the 66 pesticides spiked into cannabis, GC/TQ found 46 at 4.5 ppb in dilute cannabis matrix. The other 22 require LC/TQ.
- Of the 66 pesticides spiked into cannabis, GC/Q-TOF found evidence for 40 at 5 ppb in dilute cannabis matrix. A few responses were below the detection limit. Others require LC/MS.
- The GC/Q-TOF can screen for ~1000 pesticides and environmental contaminants. When standards are available, one can quantify the hits. Or, new hits can be added to the GC/TQ method.

References

[1] A novel comprehensive strategy for residual pesticide analysis in cannabis flower, **Agilent Technologies Application Note No 5991-9030EN, March 9, 2018.**