

The Postnova Characterization Platform

Characterization of Polymers, Proteins and Particles by FFF and SEC with Advanced Detection

Paul Clarke

Postnova Analytics UK

International Symposium on GPC/SEC and Related Techniques

Amsterdam, September 26th-29th, 2016

Agenda

- Introduction to Field Flow Fractionation
- The Postnova characterization approach
 - Separation modules
 - Detection modules
- Application examples

FFF for polymers

- FFF is a complementary technique to GPC/SEC
- It can separate things SEC cannot (particles, gels, emulsions etc.)
- Repeatability good but SEC still better with 'easy' soluble polymers
- High-molecular weight polymers are always a challenge!
 - Sample preparation (but FFF slightly less demanding than SEC)
 - Method development

FFF Separation Principle

- Separation in a narrow ribbon-like channel
- Laminar flow inside the channel
- External field perpendicular to the solvent flow
 - Flow
 - Centrifugal
 - Thermal
 - Gravitational
 - Electrical

SEC + FFF

Asymmetric Flow FFF (AF4)

• Hydraulic pressure gradient field (cross-flow) for separation

	Concretion boood on size		
•	Separation based on size	Polymers	Rubbers
		Nanoparticles	Polysaccharides
		Polymersomes	Liposomes
		Proteins	Antibodies
		Viruses	Exosomes

Asymmetric Flow FFF (AF4)

Sample Focussing

- Focusing of sample
- Cleaning / washing of sample
- Higher resolution / reduced band broadening
- Continuous detector flow
- Increased recovery rate

CF2000 - Centrifugal FFF (CF3)

Centrifugal FFF Channel

TF2000 - Thermal FFF (TF3)

The Postnova Characterization Platform

Polymer characterization by FFF/SEC

What information do the detectors contribute?

Refractive Index (RI) detector – Concentration of the sample

Ultra Violet (UV) detector – Concentration of sample with a given chromophore

Viscometer Detector (Visc) – Intrinsic Viscosity (IV) of the sample (inverse density)

Multi-Angle Light Scattering (MALS) – Molecular weight (MW) and molecular size (Rg)

By combining the detectors (RI, UV, MALS, Visc), we can enhance the data further:

MALS+Visc = Rh, Rg_(ff), Mark Houwink data (structure), Branching

RI+UV = protein conjugate ratio or copolymer content

Application Examples

1. SEC Applications

PLGA polymers for nanoparticles

Hyaluronic Acid by SEC

Triple Detection Chromatogram

Angular Dependence – MALS View

HA sample of ~2 MDa reduced to <0.5 MDa on sterilization. RI overlay shows effect of sterilization on distribution. Note also MH slope change

2. AF4 Applications (Flow FFF)

AF2000 – Flow FFF (AF4)

Polystyrene Latex Nanoparticle Mix

Same instrument, different flow method!

Polystyrene Standards Mix

Crosslinked HA Sample by FFF

AF4 – MALS/RI Fractogram

Crosslinked HA showed <10% recovery on SEC but >80% recovery on FFF

Molecular weight data

	M _w [g/mol]
<i>n</i> -Average	2.8 x 10 ⁵ ± 9.1 %
w-Average	5.3 x 10 ⁵ ± 3.9 %
z-Average	1.0 x 10 ⁶ ± 10.2 %

Dextran Coated Magnetic Nanoparticles

Raw Data Fractogram of AF4 - MALS and UV

Rg/Rh ratio indicates aggregation which is confirmed by TEM

Polymersome structure

Radius of Gyration (MALS) and Hydrodynamic Radius (DLS)

Data indicates mixture of structures (spheres and tubes) also seen on TEM

SiO₂ Sample AF4-MALS-ICP-MS

SiO₂ Standard, Conc. ~2 mg/L

90° LS Signal (red trace) and Si 28 (blue trace)

Conditions

- Injection Volume: 2000 µL
- Concentration:~ 2 mg/L
- LS 90°(red trace)
- Si 28 Signal (blue trace)

Overlay: Radius of Gyration and Si 28 trace

- Calculated from MALS angular data
- Broad distribution starting from 7 nm up to large particles (998 nm).

AF4-UV-ICP-MS – Tattoo ink analysis

3. CF3 Applications (Centrifugal FFF)

Nanoparticle drug delivery

CF3-DLS – Detection of PEG-PLGA-Nanoparticles in cell medium

- Incubation of the nanoparticles in cell media was performed at 98 °F.
- Detected NP size increased over time
- The decreasing overall particle numbers observed after prolonged incubation shows agglomeration/ aggregation of nanoparticles

www.postnova.com . Kohl Y., et al, Nanosafety Conference 2013, Biopolymer Nanoparticles for Therapeutic Applications: Synthesis, Characterization and Assessment of Biocompatibility..

CF2000-ICP-MS

Mass Discrimination: Au- and Ag Nanoparticles (d = 20 nm)

CF2000-UV + TEM

Fractionation of Au Nano Rods from Au Nano Eggs

• Separation according to mass and hydrodynamic diameter

Tadjiki and Klein, The Column, 2014, 10(14), 11-16.

4. TF3 Applications (Thermal FFF)

TFFF Applications – PS

Separation of PS standards

System

- TF2000 FFF System
- PN3150 RI Detector

Conditions

- Injection Volume: 20 µL
- Concentration: 2 mg/mL
- Temp. grad. $\Delta T = 90^{\circ} K$ to $0^{\circ} K$

TF2000 Applications

Separation of PS and PMMA-Standards with same R_h **SEC in THF (SDV Columns) Thermal FFF in THF** VS. Molar Mass from Light Scattering PS Molar Mass from Light Scattering PS + PMMA • Molar Mass from Light Scattering PMMA 0.50 PS 96 kg/mol PS 96 kg/mol 0.45 PMMA 106 kg/mol 0.15 0.40 PMMA 106 kg/mol Molar Mass [g/mol] 10⁵ -0.35 Molar Mass [g/mol] 10⁵ RI Signal [V] 0.30 \sum 0.10 0.25 **Signal** _{0.15} 2 0.05 0.10 0.05 10⁴ 0.00 0.00 10 28 29 30 31 32 33 34 35 36 20 30 40 50 60 **Retention Time [min] Retention Time [min]**

Separation by Hydrodynamic Size and Chemical Composition

TF2000 Applications

See Gerhard Heinzmann talk tomorrow at 14:00 !

www.postnova.com .

Summary

FFF and GPC/SEC are both well-established techniques for the characterization of macromolecules, with FFF also a valuable tool for separation and characterization of (nano)particles, gels, aggregates and larger complexes.

The overlap between the GPC/SEC and FFF application areas and technique capabilities can now be fully exploited in a single, highly flexible modular instrument platform from Postnova.

34

www.nosincus.co.m

Thank you!

paul.clarke@postnova.com

www.postnova.com .

33