Elemental Analysis of Beer by ICP-OES

Introduction

The analysis of metals during the beer brewing process is important as certain elements can affect the quality and taste of final beer products. Metals can originate from a range of sources including the brewing water, malt grains, hops, adjuncts, fruits, and spices. They can also be introduced through the brewing and packaging process. Brewers deliberately introduce metals in the form of salts (CaSO4, MgSO4, ZnSO4, CaCl2) to control pH, adjust taste, improve efficiency, and enhance fermentation performance. Metals that can be detrimental to the overall taste of beer include iron, which can impart a metallic taste. As a result, the concentration of Fe must be kept as low as possible in the finished product.

This study focused on the determination of Ca, K, Mg, Na, Cu, Fe, Mn, and Zn in wort and finished beer samples using the Agilent 5110 VDV ICP-OES.

Experimental

Instrumentation All measurements were performed using an Agilent 5110 VDV ICP-OES. The sample introduction system consisted of a SeaSpray nebulizer, doublepass cyclonic spray chamber, and a 1.8 mm i.d injector torch. Instrument operating parameters are shown in Table 1

Deveneter			Cotting					
Parameter			Set	ung		_		
Using a combined run, some elements were measured in radial mode and others in axial.	Fe	Mn	Zn	Са	K	Mg	Na	
Read time (s)	-	10				5		
Replicates			3	3				
Sample uptake delay (s)			3	5				
Stabilization time (s)	2	25				3		
Rinse time (s)			3	5				
Pump speed (rpm)			1	3				
Fast pump during uptake and rinse (rpm)			0	n				
RF power (kW)			1.	20				
Auxillary flow (L/min)			1.	00				
Plasma flow (L/min)			12	2.0				
Nebulizer flow (L/min)			0.	70				
Viewing mode*	A	xial			Ra	adial		
Viewing height (mm)		-				8		
Sample pump tubing			Black/	black				
Internal standard pump tubing			Orange	e/green				
Waste pump tubing			Blue	/blue				
Background correction			Fit	ted				

Table 1. Agilent 5110 ICP-OES instrument and method parameters.

Experimental

Standards and sample preparation Wort and beer samples were obtained from the New Belgium Brewing Company (Fort Collins, CO, USA). Sample details are listed in Table 2. All in-process and finished beer samples were sonicated for 20 mins to remove CO2. Following sonication, 10 mL of beer was diluted in 10 mL of 14% HNO3. All wort samples were filtered through Whatman paper before preparation. 8 mL of wort was diluted in 32 mL of 8.8% HNO3 and 3.8% ethanol. All beer and wort samples were stored at 4 °C before analysis.

Sample description
Voodoo Ranger IPA wort
Fat Tire wort
Voodoo Ranger 8 Hop Pale Ale wort
Voodoo Ranger Imperial wort
Voodoo Ranger IPA finished beer
Fat Tire finished beer
Voodoo Ranger 8 Hop Pale Ale finished beer
Voodoo Ranger Imperial finished beer

Table 2. New Belgium Brewing Company wort and finished beer samples

Multi-elemental calibration standards were prepared at 0.1 and 0.5 ppm for Cu, Fe, Mn, and Zn; and at 15.0 and 50.0 ppm for Ca, K, Mg, and Na. All standards were prepared in 7% HNO3 and 3% ethanol. Continuing Calibration Verification (CCV) standards were prepared at 0.02 ppm for minor element checks, 15 ppm for majors, and 500 ppm for K check. A control beer sample spiked with 0.1 ppm Zn was also prepared. Internal standards (ISTD), gallium and yttrium, were prepared at 200 ppm (Ga) and 40 ppm (Y). All calibration standards, Quality Control (QC) checks, and internal standards were matrix matched with 7% HNO3 + 3%ethanol.

Results and Discussion

Detection limits The Detection Limit (DL) for each element was based on three sigma of seven replicate measurements of the blank solution during an analytical run (Table 3). Sub-ppm (mg/L) level DLs were achieved for all elements. Method DLs (MDLs) were determined by calculating 3 x the SD of 10 replicate beer and wort samples, respectively (Table 3).

Results and Discussion

422.673 nm.

Ele wa	ement & velength	DL (mg/L)	Wort MDL (mg/L)	Element and Beer MDL wavelength (mg/L) (nm)		Background correction/ interference correction	Calibration range (mg/L)	Correlation coefficient
	(nm)	Maior elem	ents		Ca 422.673	Fitted + ISTD (Y 371.029)	0-50	0.9999
0-	400 670	0.0106	10.05	10.41	K 769.897	Fitted + ISTD (Ga)	0-50	0.9995
La	422.073	0.0126	13.35	10.41	Mg 279.553	Fitted + ISTD (Ga)	0-50	0.9996
K	769.897	0.6539	57.35	66.93	Na 589.592	Fitted + ISTD (Ga)	0-50	0.9999
Mg	279.553	0.0091	8.12	15.28	Cu 327.395	Fitted + ISTD (Y	0-0.5	0.9999
Na	589.592	0.0301	2.07	2.16		Fitted + ISTD (V		
		Minor elem	ents		Fe 238.204	371.029)	0-0.5	1.0000
Сп	327 395	0.0005	0 027	0 014	Mn 259.372	Fitted + ISTD (Ga)	0-0.5	0.9999
Fe	238.204	0.0008	0.061	0.014	Zn 213.857	Fitted + ISTD (Y 360.074)	0-0.5	1.0000
Mn	259.372	0.0001	0.015	0.020	Ga 417.204	Used as IS		
Zn	213.857	0.0009	0.034	0.016	Y 371.029, 360.074	Used as ISTD		

Table 3. Element wavelengths, DLs, and MDLs.

Detectability test To validate the method, a series of QC spike recovery tests were carried out during each analytical run. The tests consisted of a Continuing Calibration Blank (CCB), followed by two CCV solutions (low concentration for Cu, Fe, Mn and Zn, high concentration for Ca, Mg and Na), a K check, and control beer sample spiked with 0.1 ppm Zn. Each QC solution was analyzed six times and averaged, with all recoveries within $\pm 10\%$ of the target values. The QC results are given in Table 5. Analysis of wort and finished beer samples The four wort and four finished beer samples were analyzed using the developed method. The quantified concentration results are displayed in Table 6. All the results for all elements were within the specification limits set by the manufacturer. Comparing the concentration levels of the elements in wort and beer enables the analyst to monitor the beer brewing process. The data is also useful to characterize the product.

Jenny Nelson¹, Elizabeth Kulikov², Greg Gilleland¹, Dana Sedin³, and Stacey Williams³

- Agilent Technologies, Santa Clara, CA, USA
- Agilent Technologies, Melbourne, Australia
- New Belgium Brewing Company, Fort Collins, CO, USA

WPC 2018 POSTER # ThP02

8,500,000 8,000,000 7,500,000 6,500,000 5,500,000 5,500,000 3,500,000 3,500,000 3,500,000 2,500,000 2,000,000 1,500,000 1,500,000 1,500,000

\$00,000 450,000 400,000 350,000 350,000 250,000

1)

Intensity = 76238.94815372 * Correlation coefficient: 0.99963

Intensity = 4938.56496875 * Conce Correlation coefficient: 0.99997

Calibration linearity Linear calibrations were obtained for all elements, with calibration coefficients greater than 0.999 (Table 4) and less than 10% calibration error for each point. Figure 1 shows linear calibration curves for Fe, Cu, Mg, and Ca.

Figure 1. Calibration curves for Fe 238.204 nm, Cu 327.395 nm, Mg 279.553 nm, and Ca

Mg (279,553 nm) Calibrate

Ca (422.673 nm) Calibration

30.00 40.00 50.00 50.00 70.00 80.00 90.00 200.00 110.0 Concentration (ppm)

30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 Concentration (ppm)

Table 4. Wavelength and working calibration range.

Results and Discussion

			Element and wavelength (nm))		
	Ca 422.673	Cu 327.395	Fe 238.204	K 769.897	Mg 279.553	Mn 259.372	Na 589.592	Zn 213.857
Low conc check 0.02 ppm (mean, n=6), CCV	-	0.0215	0.0210	-	-	0.0208	-	0.0205
% Recovery	-	107	105	-	-	104	-	103
Zinc check 0.1 ppm, control sample (mean, n=6)	-	-	-	-	-	-	-	0.098
% Recovery	-	-	-	-	-	-	-	98
High conc check 15 ppm (mean, n=6), CCV	14.758	-	-	15.761	15.494	-	14.610	-
% Recovery	98	-	-	105	103	-	97	
Potassium check 500 ppm (mean, n=6)	-	-	-	464.014	-	-	-	-
% Recovery	-	-	-	92	-	-	-	-

Table 5. QC spike recovery results of the low and high CCVs, and control samples..

Sample	Ca 422.67 3	Cu 327.39 5	Fe 238.204	K 769.89 7	Mg 279.55 3	Mn 259.37 2	Na 589.59 2	Zn 213.85 7
			Со	ncentrat				
W1	96	0.242	0.045	857	129	0.183	30	0.163
W2	80	0.195	0.149	675	111	0.150	26	0.167
W3	85	0.204	0.054	735	124	0.241	26	0.183
W4	74	0.357	0.055	1125	178	0.263	36	0.262
B1	90	0.099	0.029	719	134	0.287	25	0.016
B2	61	0.047	0.038	464	90	0.132	17	0
B 3	101	0.076	0.023	692	106	0.308	12	0
B4	62	0.148	0.032	850	145	0.295	26	0.028

Table 6. Concentration of major and minor elements in wort and finished beer samples.

IntelliQuant semiguantitative results A wort and finished beer sample were analyzed using IntelliQuant during the analytical run. A custom IntelliQuant calibration (1.0, 5.0 and 10.0 mg/L) was created using an Agilent QC standard solution. The semiguantitative results for all elements in the wort and finished beer samples are shown in Table 7. The results reveal the presence of high levels of silicon in the samples. Silicon is present in barley and is introduced at high levels during the beer brewing process. Levels are typically not monitored during the process but can be of interest in terms of dietary intake.

Flowentend	Wort	Finished beer		
wavelength (nm)	IntelliQuant value	IntelliQuant value		
	(mg/L)	(mg/L)		
Na	9.3	17.5		
Mg	24.9	48.3		
Si	3.35	17.6		
К	136.1	309.5		
Ca	20.4	30.6		
Mn	0.1	0.1		
Sr	-	0.1		
В	0.1	-		

Table 7. IntelliQuant semiguantitative results of elements in wort and finished beer samples.

Agilent

The lab at New Belgium. Agilent 5110 VDV (Vertical Dual View) ICP-OES

Conclusions

• Major and minor metals in wort and finished beer samples were measured with good speed and accuracy using the Agilent 5110 VDV ICP-OES.

• The method can be used to provide valuable information to brewers at different stages of production allowing them to optimize the quality of the final product.

• In addition to the quantified method results, high levels of Si were identified in the wort and beer samples using the IntelliQuant (semiquantitative) feature of the ICP Expert software.

Acknowledgements

Agilent Technologies would like to thank the New Belgium Brewing Company for their co-operation and collaboration

For the full Application note of this poster please visit www.agilent.com/chem Published September 28, 2017 Publication number: 5991-8394EN