

The Chromatography Checklist

Rita Steed Alexander Ucci May 23, 2018

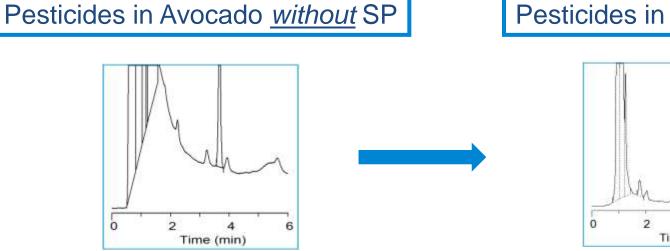
May 22, 2018

Agilent Restricted

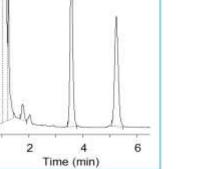
Checklist

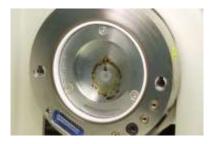
- □ Is your sample ready?
 - ✓ Solubility: sample solvent and starting mobile phase conditions
 - ✓ Filters
 - ✓ Sample Clean-Up
- □ Supplies
 - ✓ In-line filters, safety caps, quick connect fittings
- Instrument
 - ✓ Maintenance
 - ✓ Role
 - ✓ Housekeeping
- Method
 - ✓ Established or new
 - ✓ Conditions
- Column
 - ✓ Choice
 - ✓ Documentation
 - ✓ Guards
- Final checklist

Sample Clean-Up Filtration, Solid Phase Extraction, QUECHERS, and more!



Why Perform Sample Clean-Up?


- To acquire desired sensitivity/selectivity
- To reduce contamination/carryover issues
- Use of sensitive and expensive instruments: <u>Protect</u> <u>your investment!!!</u>



Salt build-up in LC-MS ion source from unextracted salts

Pesticides in Avocado with SP

Curtain plate after injection of 25 samples with extractions from raisins without cleanup

Which Sample Clean-Up technique is right for YOU?

Solid Phase Extraction (SPE)

Multi-step approach for highest level of sample cleanup

QuEChERS (dSPE)

Sample cleanup by extraction of bulk interferences

Captiva EMR-Lipid (PPT and lipid removal)

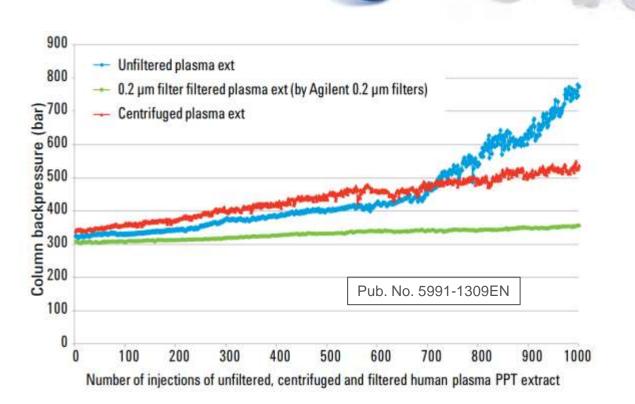
Removes precipitated proteins by in-well protein precipitation and also removes lipids

Filtration

Simple and fast removal of particulates

Captiva Filtration and it's Benefits

Filtration is basic sample preparation method for all kinds of samples


Physically removes particulates from the sample

Prevents blocking of capillaries, frits, and column inlet (especially for UHPLC columns with 1.8 and 2.7 um particle sizes)

Results in less downtime of the instrument for repairs

Results in less wear and tear on the critical moving parts of the injection valves

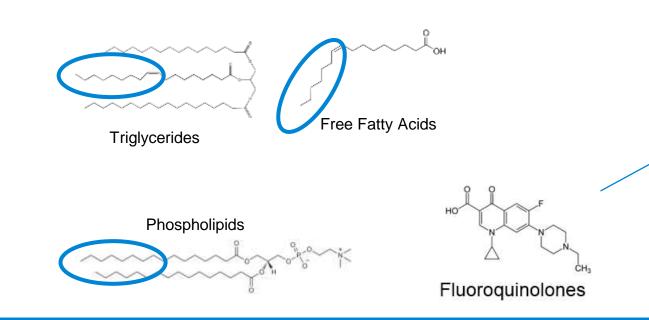
96-well plate formats available

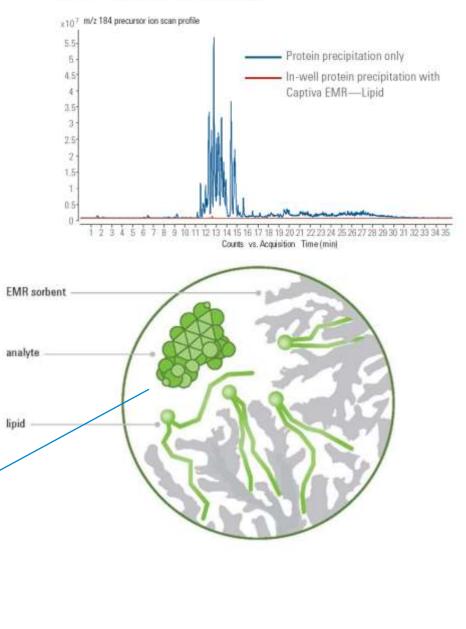
Unfiltered, centrifuged, and filtered plasma extracts Zorbax RRHD Eclipse Plus C18, 2.1 x 50 mm, 1.8 µm column, PN 959757-902

Captiva Syringe Filters Guide 5991-1230EN

Syringe Filter Selection Tool

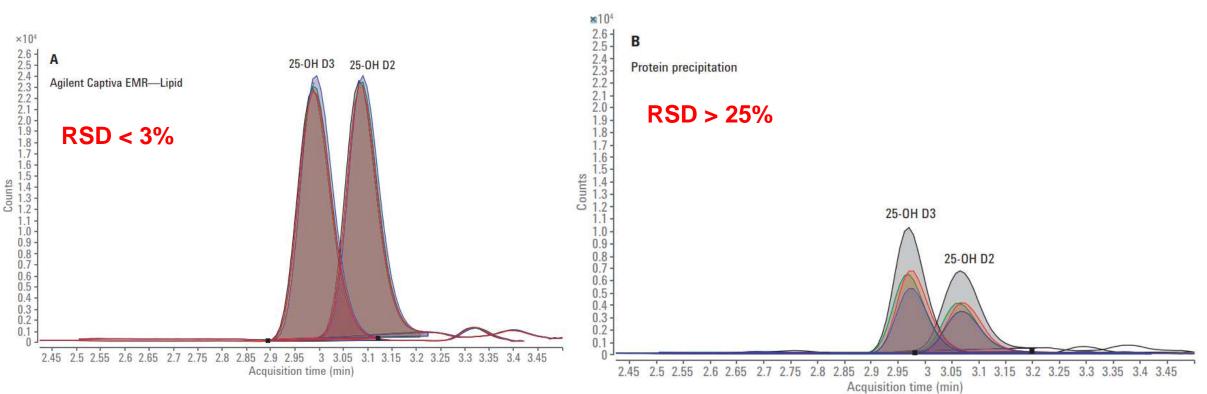
Captiva EMR-Lipid


- One of Agilent's newest products with a 2 in 1 benefit of removing proteins and lipids
- Simple pass-through format
- Solvent-retention frit in 1 mL cartridge/96-well plate format for in well protein precipitation (*in situ*)
 - Unique cartridge/well construction minimizes clogging and <u>ensures protein</u> and lipid removal (no cloudy samples)
- 3 and 6 mL cartridge format for larger samples
 - Do not contain solvent retain frit which allow for gravity flow
 - Protein precipitation performed offline (QUECHERS, etc.)
- Unique cartridge/well construction minimizes clogging and <u>ensures protein and</u> <u>lipid removal</u> (no cloudy samples)
- High analyte recoveries
- Effective use will reduce ion suppression, increase analyte sensitivity, and detection, and extend the lifetime of your analytical column


Enhanced Matrix Removal: EMR-Lipid

EMR-Lipid sorbent <u>technology</u> effectively traps lipids through two mechanisms:

- Size exclusion Unbranched hydrocarbon chains (lipids) enter the sorbent; bulky analytes do not
- Sorbent chemistry Lipid chains that enter the sorbent are trapped by hydrophobic interactions



Effective phospholipid removal

Protein Precipitation vs. Captiva EMR-Lipid RSD and Peak Area

Protein Precipitation

Captiva EMR-Lipid

Lipids cause reproducibility problems resulting in high RSD values

Using Captiva EMR-Lipid \rightarrow low RSD values and higher peak areas

Higher peak area due to less ion suppression \rightarrow can lead to lower detection limits

QuEChERS

Screening of pesticide residues in fruit and vegetables

• Developed to make sample cleanup of food faster, simpler, less expensive, and greener

Now used with other matrices and compound classes as well

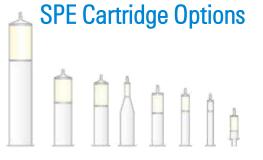
QuEChERS: Quick Easy Cheap Effective Rugged Safe

Commercially available kits allow for ease of use and convenience leading to increased throughput

Consists of two steps, and thus 2 kits:

Step 1: Liquid Extraction

Step 2: Dispersive SPE / Interference Removal



Bond Elut Solid Phase Extraction

The Trusted Name in Solid Phase Extraction

SPE Benefits	Bond Elut SPE Products Deliver
 Selectivity ranges support a range of sample prep goals, from targeted matrix removal to target analyte concentration Easily automatable for increased throughput and reproducibility Removes the widest set of matrix interferences for cleaner samples Depth and breadth of published applications makes choosing, optimizing and implementing SPE methods easier Allows for lower detection limits and longer instrument uptime from cleaner extracts 	 Widest selection of formats to accommodate different sample types and sizes and to fit into lab workflows Over 50 unique polymeric, silica, and specialty sorbents for a wide range of application requirements Reliable, consistent performance to ensure best performance for your lab

96-well plate SPE

Productivity Benefits with Sample Preparation

More Matrix Removal = Less Matrix Entering System = Time and Cost Savings!

- ✓ Less matrix build-up
 - Less interferences
 - Improved S/N
 - Better reproducibility
- ✓ Better chromatography
 - Less time spent on data analysis/manual integration
 - Less time spent on re-runs/recalibrations
- ✓ Less maintenance
 - Less instrument down-time
 - Saves \$\$ on consumables/services
- ✓ Less troubleshooting
 - "Is it my column or my MS"?
 - Less instrument down-time

LC Supplies

InfinityLab Solvent Bottles and Inlet Filters

- Inlet filters- Not a replacement for good mobile phase hygiene
 - Glass solvent inlet filter (20 µm), 5041-2168
 - Stainless steel solvent inlet filter (recommended for LC-MS), 01018-60028
- Agilent solvent filters show uniform particle size and superior pre-size homogeneity
- Agilent solvent inlet filters are packed in ultraclean antistatic bags with inner metallic coating, while other vendors use normal plastic bags.
- LC/MS analysis shows potential contamination through slip agent when using 3rd party filters.
- Optional bottle tags and bottle labels with Agilent's InfinityLab solvent bottles

InfinityLab Stay Safe Caps for Solvent Bottles

The venting valve plays an important role in maintaining your workspace, keeping it safe and clean. It blocks harmful vapors and assures the required ventilation while solvent is being pulled to the LC instrument.

The time strip has a lifetime of 6 months and will alert you when to replace the venting valve

We also sell caps for waste container We sell a variety of different caps with different amount of ports

Pump

Items to have on hand:

- PTFE frits
- Pump piston seals

Typical Schedule for Pump

p/n: 01018-22707

Item	Typical Schedule	Comments
Solvent inlet filter	Replace every 6 - 12 months	
PTFE frits in purge valve + gold seal	Every 12 months	
Piston seals		When changing the seal, check the piston for scratchesreplace if scratched
Inlet valve cartridge, outlet ball valve	Every 24 months	

Adjust according to your samples, conditions, and performance goals

Detector – Which One & Why

>UV/DAD

- Popular, simple to use, reliable, sensitive
- Sample must have UV absorbance

≻MS

- Sensitive
- Sample must be ionizable

≻RI

- Refractive Index; difference between analyte and mobile phase
- Need strict temperature control

≻ELSD

- Independent of a compound's absorbance, fluorescence, or electro-activity
- Enables detection of semi-volatile and thermally sensitive compounds

≻FLD

- More selective and can be more sensitive
- · Compounds must fluoresce; Compounds often derivatized

≻ECD

- Very sensitive
- Can produce severe noise

Detector Care MS Detectors

Flush the nebulizer	Daily after use to flush the tubing, valves, and nebulizer
Replace the nebulizer needle	When plugged
Clean the spray chamber	Daily or when carryover is suspected
Check the rough pump fluid level	Check weekly for color and level; replace every six months

Edwards pump Oil 6040-0834

MS40+ pump Oil 6040-1361

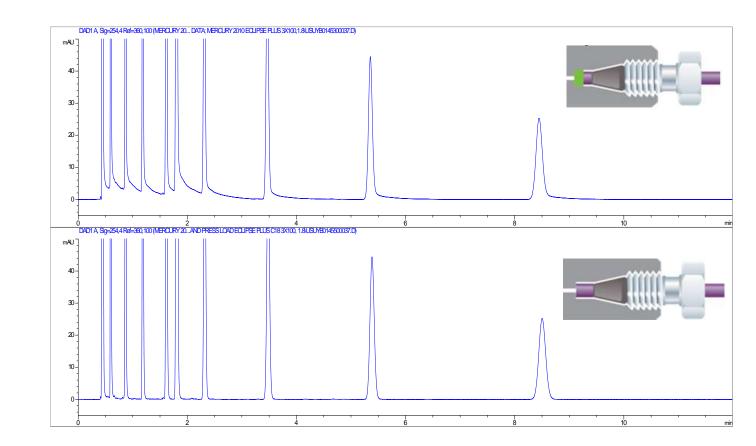
Autosampler and Column Compartment

Maintenance points on Autosampler

- Needle
- Loop capillary
- Needle seat
- Injection valve rotor seal
- Metering device seal

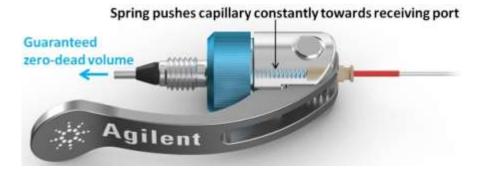
In-line Filters

- In-line filters can help extend the life of your column
- Traps particulates that can plug column frits
- Not intended to be a replacement for good sample cleanup
 Guard Columns
- Protects analytical column from sample contaminants that are strongly or permanently retained



Making Great Connections

Connection problems can lead to:


- Downtime
- High cost of operation

- Poor chromatography results
 - Broad or tailing peaks
 - Loss of resolution
- Expensive maintenance cost
 - Overtightening
 - Column damage
 - Leaks, added troubleshooting

Simplifying column and fitting connections with InfinityLab Quick Connect and Quick Turn Fittings

Quick Connect fitting

- The unique spring-loaded design applies a constant force to eliminate dead volume. The spring-loaded design constantly pushes the tubing against the receiving port, delivering a reproducible connection with no dead volume for consistent chromatographic performance.
- Finger tight to 1300 bar: seals with a simple turn of the lever
- For instrument connections that are tight, you can use the InfinityLab QuickTurn fitting
 - Finger tight to 600 bar, wrench tight to 1300 bar
- Both fittings contain stem length that is adjustable through the spring which makes the fitting compatible with all types of LC columns

Quick Turn fitting

Agilent A-Line Vials

Maximum inertness: The inert performance of Agilent A-Line vials, results in reduced analyte peak variability, so you can have the utmost confidence in your results.

Consistent performance: Vial-to-vial lot-to-lot Agilent A-Line vials demonstrate consistent performance, so you spend less time troubleshooting and rerunning samples.

Certification of analysis: Agilent A-Line vials come with a certificate of analysis, so you can be sure that they will perform even in the most demanding environments.

Designed to fit a range of caps: Agilent A-Line vials can be used with your existing 2 mL autosampler caps, for easier inventory management.

Fewer septa issues: Agilent septa are continually being improved to limit leaching, coring, sticking, push-through, hardness, and adsorption/absorption.

Checklist

- □ Is your sample ready?
 - ✓ Solubility: sample solvent and starting mobile phase conditions
 - ✓ Filters
 - ✓ Sample Clean-Up
- □ Supplies
 - ✓ In-line filters, safety caps, quick connect fittings
- Instrument
 - ✓ Maintenance
 - ✓ Role
 - ✓ Housekeeping
- Method
 - ✓ Established or new
 - ✓ Conditions
- Column
 - ✓ Choice
 - ✓ Documentation
 - ✓ Guards
- □ Final checklist

LC Instrument

MaintenanceRoleHousekeeping

Is your System Maintenance Up To Date? Typical Schedule*

PUMPS

Item	Typical Schedule	Comments
Solvent inlet filter	Replace every 6 - 12 months	
PTFE frits in purge valve + gold seal	Every 12 months	
Piston seals	Every 12 months	When changing the seal, check the piston for scratchesreplace if scratched
Inlet valve cartridge, outlet ball valve	Every 24 months	

AUTOSAMPLER

Item	Typical Schedule	Comments
Needle and needle seat	Every 12 months	
Rotor seal	Every 12 months	
Metering device seal	Every 24 months	

COLUMN COMPARTMENT

Item	Typical Schedule	Comments
Column switching valve rotor seal	Every 12 months	
Column fittings	Every 5 to 10 column changes	A-line fittings last a lot longer than traditional
		fittings

DETECTORS

Item	Typical Schedule	Comments
Lamps	Every 2000 hours	Watch for a noisy baseline
Flow cell	Check cleanliness every 6 months	Low light intensity could be caused by a dirty flow cell

*Adjust according to your samples, conditions, and performance goals

Check out - A Gram of Prevention: Simple Tips for Maintaining Instrument Performance

https://agilenteseminar.webex.com/ec3300/event center/recording/recordAction.do?siteurl=agilente seminar&theAction=poprecord&recordID=805720 7&internalRecordTicket=4832534b0000004c45 844572945e7b28ba731ae9f5854e008a76b4598b 318dcb3f39f8efb42e39d

HPLC Maintenance Videos

Changing the Seals in a 1260 Bianary, Quaternary, or Isocratic Pump without Seal Wash Option

https://www.youtube.com/watch?v=vFU VHssMnx4

HPLC Maintenance Videos

How to Properly swage a Stainless Steel fitting to a Capillary

https://www.youtube.com/watch?v=iTilOMH51Uc&ind ex=11&list=PLThrdl2ragoImT3J-W5r8ailvJN94DJMR

Performance Characteristics

Common to isocratic & gradient

- Flow accuracy
- Pressure pulsation

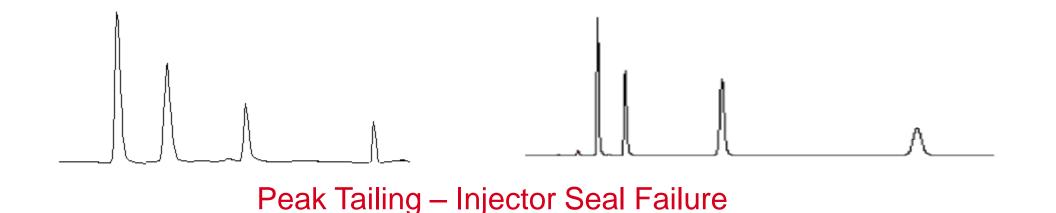
Gradient Pump Only

- > Delay volume in low and high pressure mixing
 - Determine your dwell volume (see appendix)
- Composition accuracy & precision

Influence on...

- RT & peak area precision
- Baseline noise

- Gradient shape and precision
- RT & peak area precision


Role – Injector

Performance Characteristics

- Injection volume precisionWide linearity
- > Minimum carryover

Influence on...

- Precision of peak area/height
- Accuracy of peak area/height (when using different injection volumes
- Precision of peak/area height

Role - Thermostatted Column Compartment

Performance Characteristics	Influence on	40º C
 Temperature accuracy Temperature precision 	 Elution order Peak identification Elution order RT precision 	AB 65° C B A
	Peak identification	0 5 10 Time in Minutes

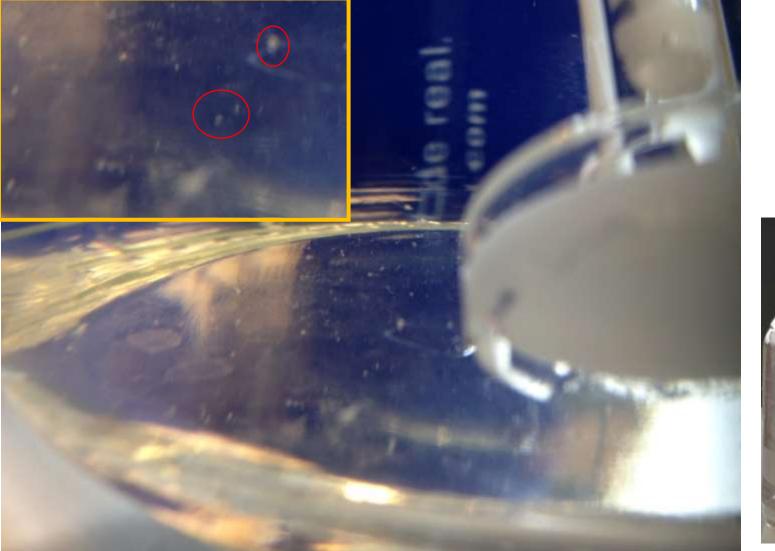
Role - HPLC UV/Vis Detectors

Performance Characteristics	Influence on
Variable Wavelength & Diode Array Det	ector
 Low noise, wander, and drift Wide linear range Wavelength accuracy & precision 	 Detection limit, quantitation limit Quantitation at low & high concentration Accuracy & precision of peak areas/heights
Diode Array Detector Only	
 Spectral resolution Spectral sensitivity 	 Accuracy of spectra, peak id by spectra Accuracy of spectra, peak id by spectra at low concentrations

Housekeeping

Daily/System Start-up

- □ Mobile phase how fresh is yours?
- □ Purge pumps ~5 minutes
- □ Condition pump for ~15 minutes


Weekly

- Seal wash solvent
- Buffer flush
- □ Visual inspection of solvent filters
- □ Purge with composition of your application
- □ Condition with composition of your application

Growth in H2O over 1 week in a clear bottle

Page 31 May 22, 2018 Agilent Restricted

Avoid growth of algae

Algae

The presence of algae in aqueous media can cause a variety of problems in your HPLC. Buffers, light and a pH between 4 and 8 will accelerate their growth.

For more information refer to your pump reference manual.

Method & Column

Method

- ✓ Established or New
- ✓ Conditions
- Column
 - ✓ Choice
 - ✓ Documentation
 - ✓ Guards
 - ✓ Equilibration

Method Conditions

Mobile Phase

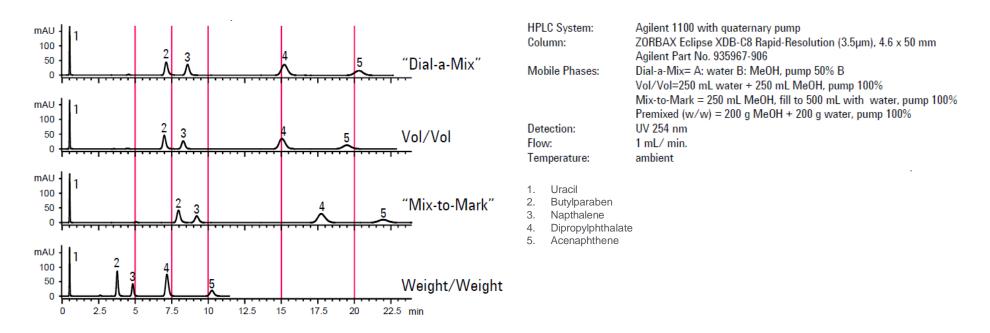
- ✓ HPLC or MS grade solvents
- ✓ Buffer right choice, column, LC, LC/MS, filtered?
- ✓ Preparation procedure
- ✓ Fresh mobile phase
- ✓ Bottles covered? No paraffin
 - Volatile components
- ✓ Label bottles, content + date
- ✓ Amber bottle for aqueous
- ✓ Make sure system flushed before introducing new mobile phase
- ✓ pH
- □ Temperature
- Pressure
- □ Standards, test mix

Buffer Options

Non-volatile:		рК _а	Buffer Range
Phosphate		pK ₁ = 2.1	1.1 – 3.1
		pK ₂ = 7.2	6.2 - 8.2
		pK ₃ = 12.3	11.3 – 13.3
Citrate	CH ₂ COOH	pK ₁ = 3.1	2.1 – 4.1
	носсоон	pK ₂ = 4.7	3.7 – 5.7
	CH ₂ COOH	pK ₃ = 5.4	4.4 - 6.4
Borate	H ₃ BO ₃	pK ₁ = 9.2	8.2 – 10.2
Volatile:			
Trifluroacetate	F ₃ CCOOH	pK ₁ = 0.5	xx – 1.5
Formate	НСООН	pK ₁ = 3.8	2.8 - 4.8
Acetate	CH₃COOH	pK ₁ = 4.8	3.8 – 5.8
Ammonium	NH4 ⁺	pK ₁ = 9.2	8.2 – 10.2

Mobile Phase Preparation

Small changes in mobile phase strength can have a large affect on retention

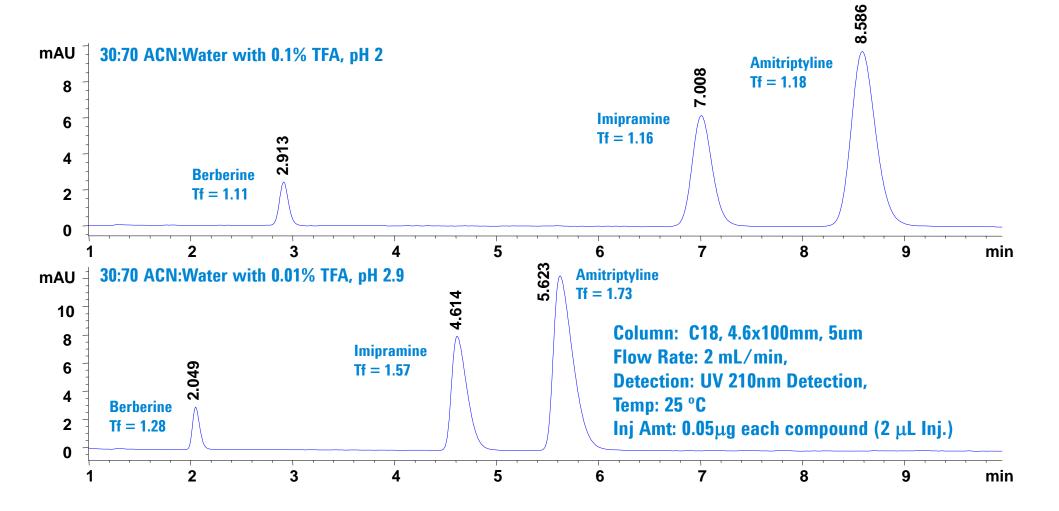

- ✓ HPLC grade or better
- ✓ Buffer prep procedure
 - Be consistent
 - Document process

Volume % of solvents can depend on preparation

Specified volume ACN added to a 1 L volumetric and made to volume with H_2O \neq Specified volume H_2O added to a 1 L volumetric and made to volume with ACN \neq 500 ml H_2O added to 500 ml ACN

- Degree of contraction is affected by the relative quantities of each
- Temperature

Mobile Phase Preparation Effect on Chromatography



Method used to prepare MP can significantly affect the elution pattern
 Be consistent

w/w is more accurate than v/v

Effect of Mobile Phase Preparation on Chromatography, Pub. No. 5988-6476EN

Changes in Volatile Buffer Concentration Can Cause Shifts in Retention Time and Peak Shape

Column

Choice

- ✓ Conditions, flow rate, pressure, pH
- Performance report
- Datasheet or column guide
- Benchmark with your system
- □ Suitable fittings
- Equilibrated
- □ In-line filters and/or guards
- □ Sample
- □ Store properly when done

Column Specifications

InfinityLab Poroshell 120 column specifications

InfinityLab Poroshell 120	Pore Size	Temperature Limit	pH Range	Endcapped	Carbon Load	Surface Area	USP Designation
EC-C18	120 Å	60 °C	2.0-8.0	Yes	10%	130 m2/g	L1
EC-C8	120 Å	60 °C	2.0-8.0	Yes	5%	130 m2/g	L7
SB-C18	120 Å	90 °C	1.0-8.0	No	9%	130 m2/g	L1
SB-C8	120 Å	80 °C	1.0-8.0	No	5.5%	130 m2/g	L7
HPH-C18	100 Å	60 °C	3.0-11.0	Yes	Proprietary	95 m2/g	L1
HPH-C8	100 Å	60 °C	3.0-11.0	Yes	Proprietary	95 m2/g	L7
Bonus-RP	120 Å	60 °C	2.0-8.0	Yes	9.5%	130 m2/g	L60
PFP	120 Å	60 °C	2.0-8.0	Yes	5.1%	130 m2/g	L43
Phenyl-Hexyl	120 Å	60 °C	2.0-8.0	Yes	9%	130 m2/g	L11
SB-Aq	120 Å	80 °C	1.0-8.0	No	Proprietary	130 m2/g	L96
EC-CN	120 Å	60 °C	2.0-8.0	Yes	3.5%	130 m2/g	L10
HILIC-Z	100 Å	80 °C	2.0–12.0	No	Proprietary	95 m2/g	L114
HILIC	120 Å	60 °C	0.0-8.0	No	NA	130 m2/g	L3
HILIC-OH5	120 Å	45 °C	1.0-7.0	Proprietary	Proprietary	130 m2/g	L86
Chiral-V	120 Å	45 °C	2.5-7.0	Proprietary	Proprietary	130 m2/g	L88
Chiral-T	120 Å	45 °C	2.5-7.0	Proprietary	Proprietary	130 m2/g	L63
Chiral-CD	120 Å	45 °C	3.0-7.0	Proprietary	Proprietary	130 m2/g	L45
Chiral-CF	120 Å	45 °C	3.0-7.0	Proprietary	Proprietary	130 m2/g	NA

Column Documentation

Performance Report

SERIAL NUMBER: USDAZ01333

 PART NUMBER:
 959758-902

 COLUMN TYPE:
 ZORBAX RRHD Eclipse Plus C18
 2.1 x 100 mm, 1.8 μm

 PACKING LOT #:
 B09089

TEST CONDITIONS

=	60% Acetonitrile / 40% Water
	517.2 Bar
=	0.50 ml / min
=	0.436 cm / sec
=	AMBIENT (Nominally 23 °C)
=	1 µl
	-

QUALITY CONTROL PERFORMANCE RESULTS FOR NAPHTHALENE

	IE	ST VALUES	SPECIFIC	ATIONS
	THEORETICAL PLATES =	22337	MIN =	21000
	SELECTIVITY =	1.90	RANGE =	1.82 - 1.92
	USP TAILING FACTOR = (@ 5% Peak Height)	1.08	RANGE =	0.98 - 1.20
	k' =	4.58		
VIII01A, Wavelengths254 net (M	(C00490)			
all 965.1				
80-	50° L			omponents
8			diluted in elution o	mobile pha
0.382		2.132	Peak #	Conc (ug/ml)
40		ĩ	1	10 400
		1	2 3 4	50
21-			4	80
		1		

nple components with concentrations ted in mobile phase in the following ion order,

Conc	Sample
(ug/ml)	Component
10	Uracil
400	Phenol
50	4-Chloro Nitrobenzen
80	Naphthalene

Manufacturing test chromatogram is done on a modified LC system to minimize ECV and will differ from a typical lab HPLC

- Don't expect to get the exact same result as the performance report
- Test column performance on your instrument to have as a reference

Column Documentation

Column Guide

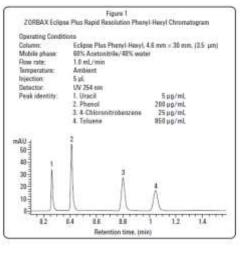
This booklet provides general information for all ZORBAX, Poroshell, Pursuit, and Polaris reversed-phase columns.

For additional detailed information about your specific phase or family, see: agilent.com/chem/columnchoices

Getting Started

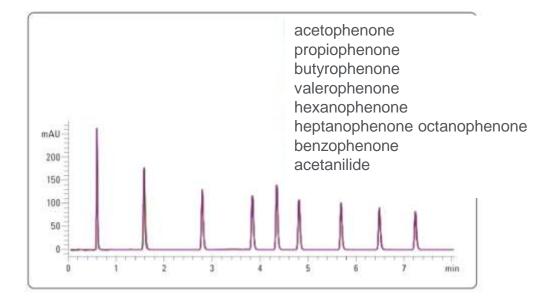
A QC Column Performance Report, including a test chromatogram, is enclosed with every Agilent column. The QC test system has been modified from a standard system to minimize system dead volume, so it may vary from the system used in your lab. This allows a better evaluation of the column and assures a more consistent product. A properly configured LC system will generate similar results to the chromatogram on your QC Performance Report.

Modern columns are robust and are designed to operate for long periods under normal chromatographic conditions. You can maximize column performance by running it within specifications. Always review the specifications before putting in place a final method.


Data Sheet

Agilent ZORBAX Eclipse Plus Phenyl-Hexyl **Rapid Resolution Threaded Column**

General Description


Eclipse Plus Phenyl-Hexyl columns are designed for superior peak shape with basic compounds, and deliver high efficiency and excellent peak shape with all sample types. Eclipse Plus Phenyl-Hexyl is especially useful for the separation of acidic, basic, and other highly polar compounds by reverse-phase liquid chromatography. Eclipse Plus Phenyl-Hexyl packing is made by first chemically bonding a dense monolayer of dimethylphenylhexylsilane stationary phase to a specially prepared, improved ultra-high purity (>99.995% SiO₂) ZORBAX Rx-SIL porous silica support. This special silica support (Type B) is designed to reduce or eliminate strong adsorption of basic and highly polar compounds. The bonded-phase packing is then doubly endcapped using proprietary reagents and procedures to obtain maximum deactivation of the silica surface. Eclipse Plus Phenyl-Hexyl columns can be used for acidic and neutral samples, but are especially suited for separating basic compounds that produce poor peak shapes on other columns. These columns can be used for a wide range of applications and over a pH range of 2 to 8, accommodating most popular mobile phases.

Column Documentation - Benchmark

Benchmark new column on your system

- 1. Standard mix; test mix (5188-6529, 01080-68704; QC reference material;
- 2. Criteria like retention time, peak area, peak tailing, resolution, response, system pressure, etc.
- 3. Theoretical plates
 - Monitor column over time
 - Troubleshoot

Sample:	RRLC Checkout sample
	(p/n 5188-6529)
Column:	Agilent Poroshell 120
	EC C18, 3 mm × 50 mm,
	2.7 µm
Mobile phase:	A = Water
	B = Acetonitrile
Gradient:	0 min 20% B
	8 min 80% B
Flow rate:	1.2 mL/min
Stop time:	8 min
Post time:	4 min
Injection volume:	1 μL
Column temperature:	30 °C
DAD:	245/10 nm
	Ref 400/100 nm
Flow cell:	10 mm
Peak width:	<0.025 min (10 Hz)

Initial Column and System Equilibration*

In an appropriate vessel, test highest % organic/buffer ratio to verify that buffer will not precipitate. With stirring, add organic to buffer first, not vice versa.

Equilibrate column with, in order:

- 100% organic modifier (if brand new)
- mobile phase minus buffer
- buffered mobile phase containing highest % organic modifier (gradient high end)
- buffered mobile phase containing lowest % organic modifier (gradient low end).

Inject standard or sample several times until RTs stable, or for gradient methods, precede former with 1 or 2 blank gradients.

*Or follow instructions in your column user guide

Do You Need a Guard Column? If you do, is it the correct one?

The **ZORBAX High Performance Guard Cartridge** components assemble quickly and easily to provide a high efficiency, low dead volume guard column that seals, with hand tightening, **up to 340 bar or 200 bar with a PEEK fitting**.

For use with columns having a 5um, 3um 0r 3.5um packing and **400 bar pressure limit**

Agilent Fast Guards (3/pk), stainless steel UHPLC guards packed with 1.8um Zorbax or Poroshell 120 materials.

- Single replacement guard column (no cartridge)
- Rated to 600 bar 1300 bar to match column

Checklist

Supplies

Critical supplies on hand

Sample

- Is it ready for chromatography?
- Instrument
 - Maintenance up to date
- Method conditions
- 🗹 Column
 - Right choice for your sample and conditions

Final checklist

- Shutdown (see appendix)
- Short term
- Long Term

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:

Option 1 for GC/GCMS Columns and Supplies
Option 2 for LC/LCMS Columns and Supplies
Option 3 for Sample Preparation, Filtration and QuEChERS
Option 4 for Spectroscopy Supplies

gc-column-support@Agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com

Resources for Support

- Agilent University http://www.agilent.com/crosslab/university
- Tech support http://www.agilent.com/chem/techsupport
- Resource page http://www.agilent.com/chem/agilentresources
 - Quick Reference Guides
 - Catalogs, Column User guides
 - Online Selection Tools, How-to Videos
- InfinityLab Supplies Catalog (5991-8031EN)
- Your local FSE and Specialists
- Youtube <u>Agilent Channel</u>
- Agilent Service Contracts

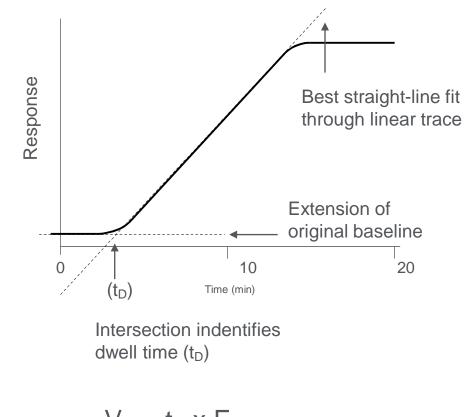
APPENDIX

Determining the Dwell Volume of Your System

Replace column with short piece of HPLC stainless steel tubing

Prepare mobile phase components

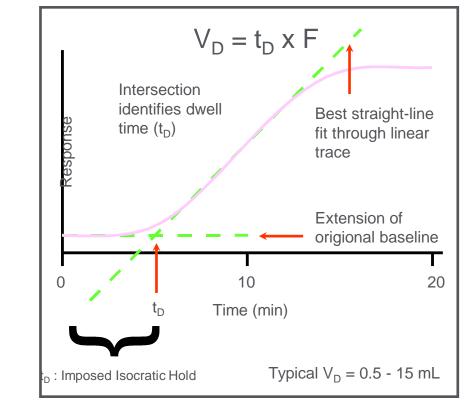
- A. water UV-transparent
- B. water with 0.2% acetone UV-absorbing
- Monitor at 265 nm


Adjust attenuation such that both 100% A and 100% B are on scale

Run gradient profile 0 - 100% B/10 min at 1.0 mL/min

Record

Measuring Dwell Volume


 $V_D = t_D \times F$ $V_D = D$ well Volume

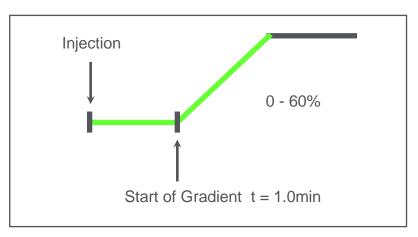
001815S1.PPT

Measuring Dwell Volume

If using gradient conditions - report dwell volume (V_D) V_D varies from instrument to instrument

High Pressure Mixing: V_D = mixing chamber + connecting tubing + injector Low Pressure Mixing: V_D = the above + pump heads + associated plumbing

001011P1.PPT



A chromatogram generated on one instrument (V_{D1}) can have a very different profile if generated on another instrument (V_{D2})

Correcting for Dwell Volume

- 1. Measure the Dwell Volume of your HPLC System $V_{\rm D}$ = 1.0 mL
- 2. Draw Effective Gradient Profile at First Flow Rate Calculate the time delay (imposed isocratic hold) caused by dwell volume $V_D = t_D \bullet F$ 1.0 mL = $t_D \bullet 1.0$ mL / min
 - where F = 1.0 mL / min for 4.6 x 150 mm column $V_D = 1.0 \text{ mL}$
 - $t_{D} = F/V_{D}$ $t_{D} = 1.0 \text{ mL} / \text{min} / 1.0 \text{ mL}$ $t_{D} = 1.0 \text{ min}$

000884P2.PPT

Correcting for Dwell Volume

If
$$V_{D1} > V_{D2}$$

Compensate for longer V_{D1} by adding an isocratic hold to V_{D2} , such that Hold + $V_{D2} = V_{D1}$

If
$$V_{D1} < V_{D2}$$

Delay injection, such that V_{D2} - delay = V_{D1}

(very difficult to accomplish in practice)

001014P1.PPT

Shutdown State and Instrument Flushing

Shutdown State

Next day use—using same buffers

• Pump mobile phase very slowly (for example, 0.01 – 0.1mL/min).

When flushing column or for longer term column storage

• Flush with 20/80 organic/water, then 80/20 organic/water or 100% organic.

Instrument flushing

- ✓ Replace column with capillary tubing. Leave disconnected from detector.
- ✓ Flush pumps with water, then connect capillary tubing to detector.
- ✓ Inject water 2-3 times at maximum injection volume setting.
- ✓ Flush all pumps with 100% organic for long term storage

Check your instrument manual for manufacturer's guidance

Buffer Preparation – General Guidance

- 1. Dissolve salt in organic-free water in 1- or 2-L beaker. Use appropriate volume to leave room for pH adjustment solution. Equilibrate solution to room temperature for maximum accuracy.
- 2. Calibrate pH meter. Use 2-level calibration and bracket desired pH. Use appropriate audit solution to monitor statistical control (for example, potassium hydrogen tartrate, saturated solution, pH = 3.56).
- 3. Adjust salt solution to desired pH. Minimize amount of time electrode spends in buffer solution (contamination). Avoid overshoot and readjustment (ionic strength differences can arise).
- 4. Transfer pH-adjusted buffer solution quantitatively to volumetric flask, dilute to volume, and mix.
- 5. Filter through 0.45 µm filter. Discard first 50 100 mL filtrate. Rinse solvent reservoir with small volume of filtrate and discard. Fill reservoir with remaining filtrate or prepare premix with organic modifier.
 - Agilent Solvent Filtration Kit, 250-mL reservoir, 1000-mL flask, p/n 3150-0577
 - Nylon filter membranes, 47 mm, 0.45 μm pore size, p/n 9301-0895

