

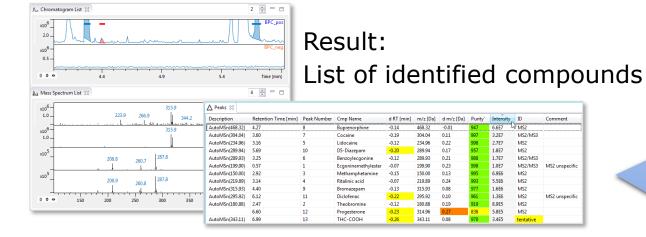
Toxtyper 3.0

VITATOX 2020, 7. - 9. 9. 2020

Spolehlivý, rychlý a jednoduchý screening

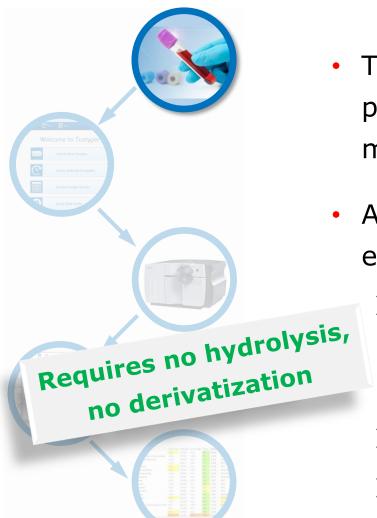
RADANAL, RECIPE, BRUKER

Ing. Daniel VláčilCountry Sales Manager Bruker s.r.o.


Toxtyper workflow for toxicology screening

Push-Button Sample Submission

UHPLC-MSⁿ analysis


Fully automated data processing and reporting

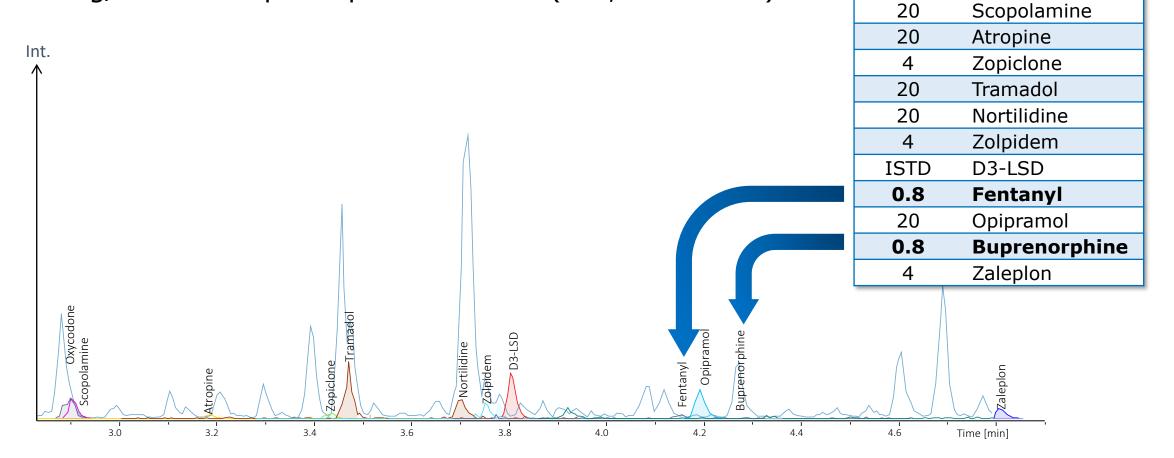
- > MSⁿ spectra extraction
- Spectral library matching
- Result report generation

Simple and fully automated workflow from sample injection to final result in 12 min

Choice of sample preparation

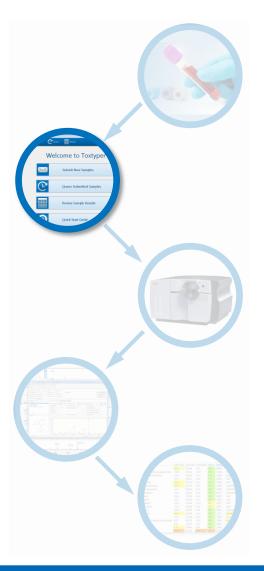
- The Toxtyper works with various proven sample preparations, depending on sample specimen and main application.
- A selection of SOPs is part of the Toxtyper Tutorial,
 e.g.:
 - Protein precipitation (PP) for fast and simple sample preparation and preservation of glucuronides
 - > Liquid-liquid extraction (LLE) or
 - Solid phase extraction (SPE)

Drug identification in urine after LLE


Compound

Oxycodone

ng/mL


20

Detection of Fentanyl and Buprenorphine at concentrations
< 1 ng/mL after liquid-liquid extraction (LLE, 1 ml urine)</pre>

Easy to use software

- Toxtyper software designed for non-MS experts
- Intuitive user interface for easy sample management

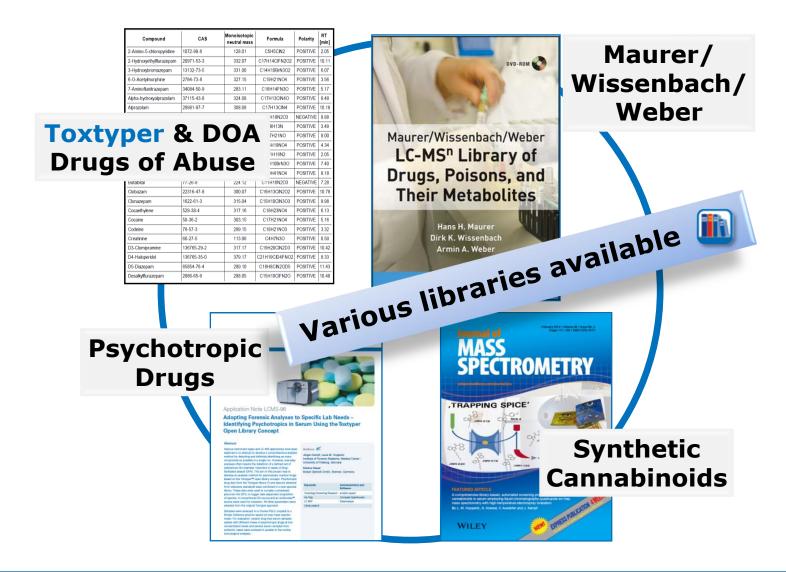
HPLC-MSⁿ data acquisition

Bruker Column Kit

Acclaim® RSLC 120 C18
 2.2 μm, 120Å 2.1 x 100 mm

Gradient

- H₂O/ACN, 2 mM ammonium formate, 0.1% HCOOH
- 11 minutes total run time


AutoMS²/MS³ Data Acquisition

- Electrospray Ionization
- Zero delay alternating polarity (ZDA[™])
- UltraScan 70-800 m/z @ at 32.000 m/z s⁻¹
- Scheduled Precursor List (SPL) containing precursor mass and retention time information of all library compounds to trigger data dependent acquisition of MSⁿ spectra

Compound identification using library search

Toxtyper 3.0 library: 1187 compounds

from various classes

Antide	pressants
--------	-----------

Amitriptyline Amitriptylinoxide Clomipramine Desipramine Dibenzepin Dosulepine Doxepin Duloxetine **Imipramine**

Oxypertine Protriptyline Reboxetine

Nortriptyline

Melitracen

Analgesics

Acetylsalicylic acid Amidopyrine Fentanyl Nifenazone Salicylamide Salicylic acid

Benzodiazepines

7-Aminoflunitrazepam Alprazolam Bromazepam Brotizolam Chlordiazepoxide Clobazam Clobenzepam

Clonazepam Clotiazepam Delorazepam Desalkylflurazepam Diazepam

Estazolam Flunitrazepam Lorazepam Lormetazepam Medazepam Metaclazepam Midazolam Nitrazepam

Nordazepam

Oxazepam

Prazepam

Temazepam

Tetrazepam

Opiates

Codeine Heroin Hydrocodone Morphin-3-beta-D-glucuronide Morphine Morphine-6-beta-D-glucuronide Oxycodone Oxymorphone **Papaverin**

Antifungal, Antibacterial ...

Griseofulvin Isoconazole Naftifine Ornidazole Phthalylsulfathiazole

Sulfadiazine Sulfadoxine Sulfaethidole Sulfalene Sulfamerazine Sulfamethizole Sulfapyridine Terconazole Tolnaftate

Amphetamines

Amphetamine **MBDB MCPP** MDA MDDMA MDFA **MDMA** Methamphetamine

PMMA

Pseudoephedrine

Sibutramin

Metabolites

Desmethyl-chlordiazepoxide Desmethyl-Citalopram Desmethylclobazam Desmethylclomipramine Desmethylclozapine Desmethyl-Mirtazapine Desmethylvenlafaxine Nordoxepine THC-COOH THC-OH

Antihistaminics

Bamipine Cyclizine **Synthetic Cannabinoids** Isothipendyl AM-1220 Mequitazine AM-2233 Methaphenilene JWH-007 Oxomemazine JWH-015 Pyribenzamine JWH-018 **Pyrilamine** JWH-019 Tritoqualine JWH-020 JWH-072 JWH-073 JWH-081

Pesticides

Triasulfuron

Alachlor

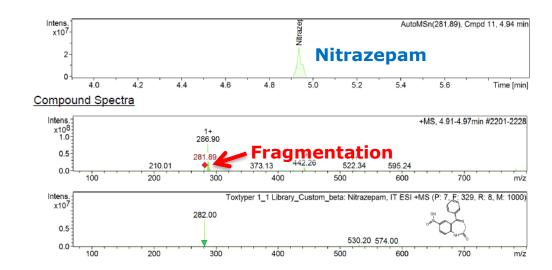
Flurochloridone JWH-122-5-fluoropentyl-derivate Isoproturon JWH-200 Metamitron JWH-210 Methabenzthiazuron JWH-250 Methoprotryne JWH-307 Metsulfuron-methyl JWH-387 Monolinuron JWH-398 Napropamide JWH-412

Sebuthylazine Methanandamide Terbuthylazine RCS-4 ortho-isomer Terbutryn

JWH-122

And many more ...

September 2019 8

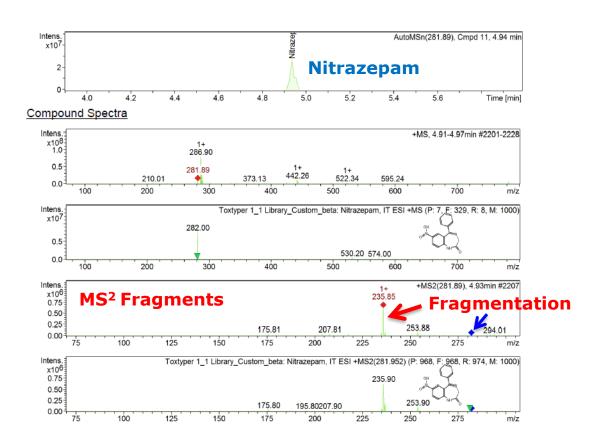

Identification by MS² and MS³: Nitrazepam

Extracted ion chromatogram

MS Spectra

experimental vs. library

Identification by MS² and MS³: Nitrazepam


Extracted ion chromatogram

MS Spectra

experimental vs. library

MS² Spectra

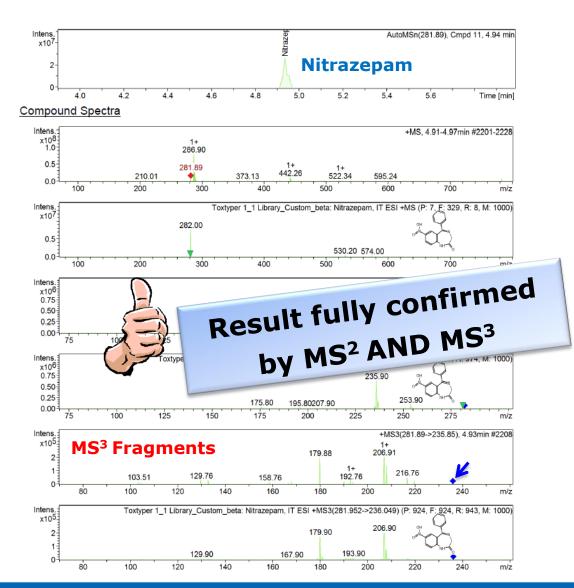
experimental vs. library

September 2019

Identification by MS² and MS³: Nitrazepam

Extracted ion chromatogram

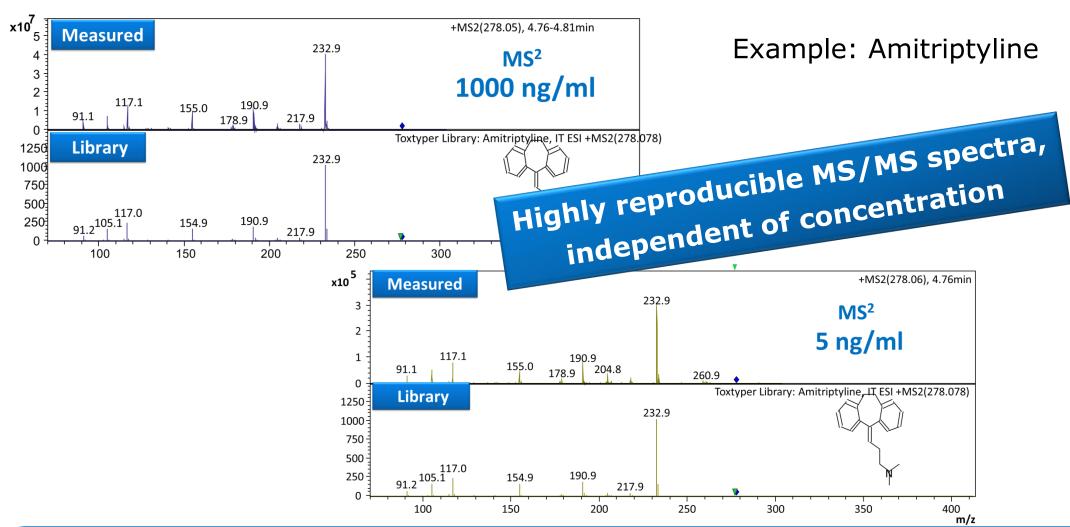
MS Spectra


experimental vs. library

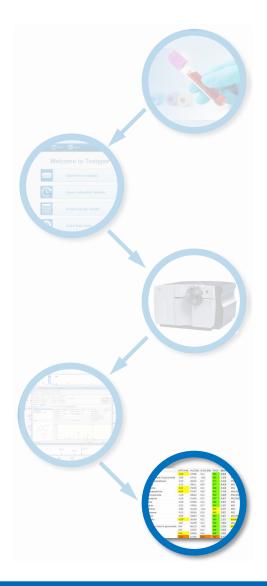
MS² Spectra

experimental vs. library

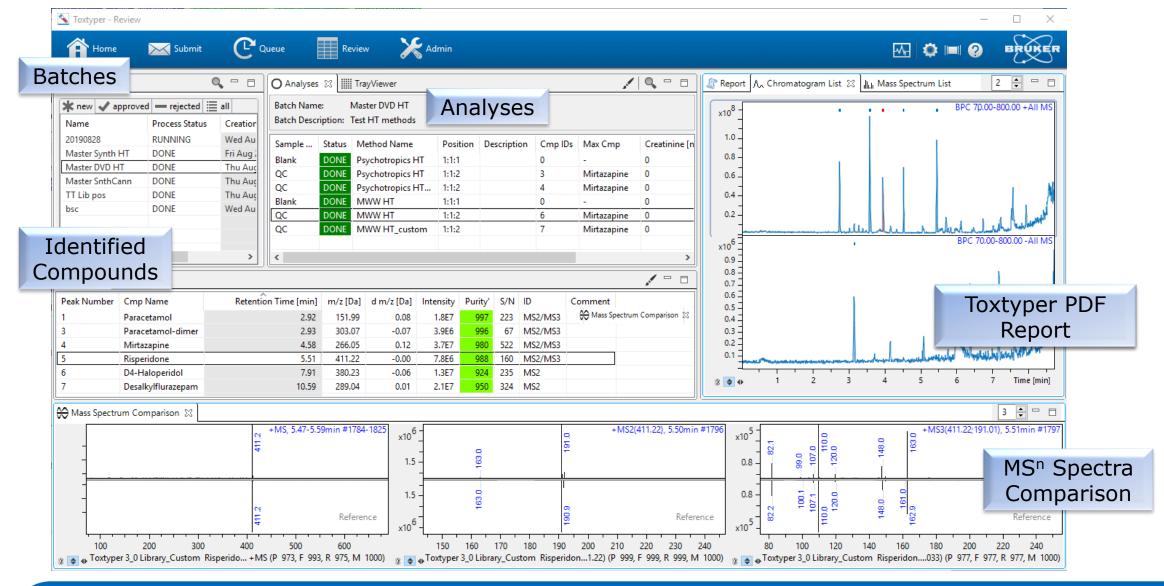
MS³ Spectra


experimental vs. library

September 2019

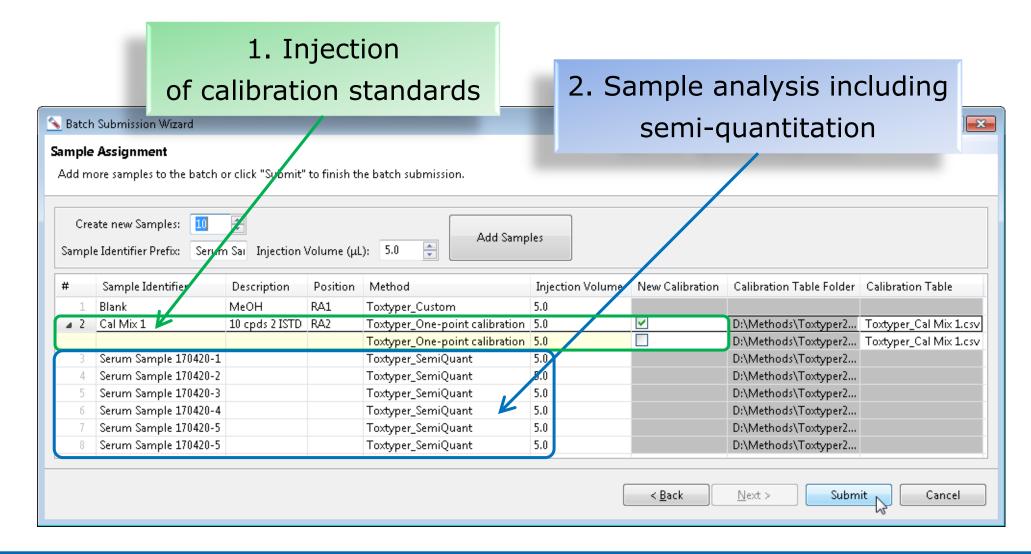

MSⁿ reproducibility independent of concentration

Automated result reporting



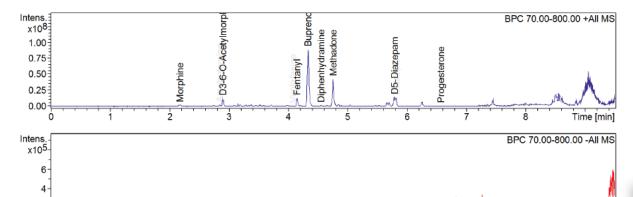
- Toxtyper provides a simple list with identified compounds and few tentative hits which require manual validation.
- Color coding can be applied in order to facilitate the review process.
- The Toxtyper software allows for fast interactive result evaluation using chromatogram and MSⁿ spectra views.
- All results are available as a PDF report that can be directly printed or sent via e-mail.

September 2019


Toxtyper review perspective: All at a glance

Batch submission for semi-quantification

Semi-quantification results


Sample-ID SQM 50
Submitter Tony Technician
Analysis Name SQM 50_RB2_01_507.d

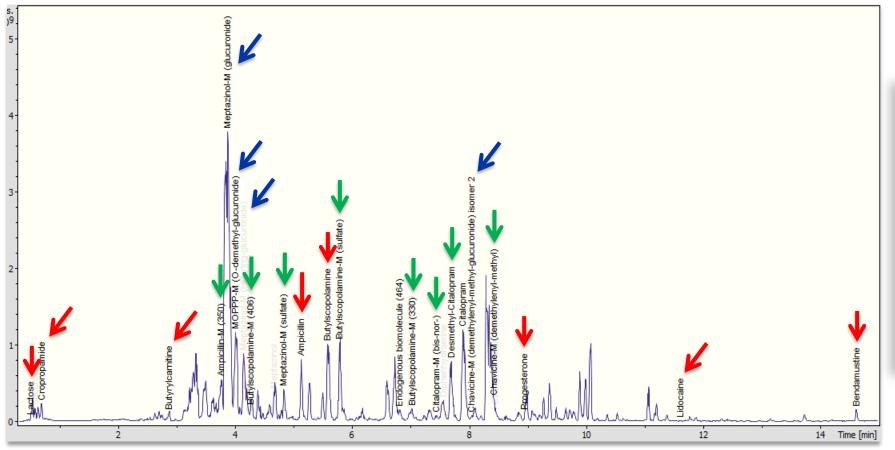
Station Toxtyper2

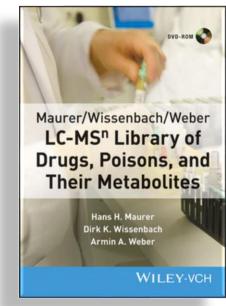
Method Toxtyper_SemiQuant /4 4 4\
Acquisition Date 11/9/2016 3:10:50 PM

Sample Description

Base Peak Chromatogram

Library Search Results


•										
Cmp Name	Cmp#	Purity'	RT [min]	d RT	m/z [Da]	d m/z	Intensity	Semi-quant Conc.	ID	Comment
Buprenorphine	6	917	4.33	-0.08	468.31	0.00	1.0 E8	90 ng/mL	MS2	
Methadone	8	982	4.76	-0.02	310.11	0.11	4.3 E7	54 ng/mL	MS2/MS3	
Diazepam	10	972	5.81	-0.11	284.89	0.19	1.5 E7	164 ng/mL	MS2	
D5-Diazepam	9	986	5.79	-0.10	289.95	0.16	1.5 E7	109 ng/mL	MS2	
Fentanyl	5	994	4.15	-0.13	337.21	0.02	1.5 E7	12 ng/mL	MS2	
D3-6-O-Acetylmorphine	3	970	2.90	-0.08	331.17	0.00	1.3 E7	44 ng/mL	MS2	
Amphetamine	2	993	2.85	0.07	136.07	0.03	2.6 E6	262 ng/mL	MS2/MS3	
Morphine	1	887	2.18	-0.02	285.99	0.15	2.6 E6	80 ng/mL	MS2	
Diphenhydramine	7	866	4.55	0.16	256.02	0.15	4.9 E5		MS2/MS3	
Progesterone	11	822	6.57	-0.26	314.99	0.24	4.8 E5		MS2	
Venlafaxine	4	835	4.08	0.06	278.01	0.20	3.4 E5		tentative	MS2 unspecific


Concentration values are listed for all calibrated target compounds

Maurer/Wissenbach/Weber library for urine drug screening

Identification of parent drugs and metabolites including glucuronides

Reporting of results MWW library in alphabetical order

Extract of Toxtyper MWW report. Grouping of drugs and their metabolites.

Butylscopolamine and metabolites

Citalopram and metabolites

Meptazinol and metabolites

Butylscopolamine	38	983	5.59	360.28	-0.18	1.1 E9	MS2/MS3
Butylscopolamine artifact (-H2O)	53	934	8.10	342.22	-0.12	1.7 E8	MS2/MS3
Butylscopolamine-M (330)	44	956	7.03	330.20	-0.10	1.7 E8	MS2/MS3
Butylscopolamine-M (406)	28	931	4.26	406.25	-0.15	1.3 E8	MS2/MS3
Butylscopolamine-M (HO-aryl)		831	4.26	406.25	-0.15	1.3 E8	MS2/MS3
Butylscopolamine-M (HO-aryl-sulfate)	27	873	4.25	456.23	-0.13	8.0 E7	MS2/MS3
Butylscopolamine-M (sulfate)	39	958	5.78	440.19	-0.09	1.1 E9	MS2/MS3
Butyrylcarnitine	13	845	2.87	232.06	0.04	6.1 E6	MS2/MS3
Chavicine-M (demethylenyl-)	62	721	10.03	274.09	0.01	1.3 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl)	56	929	8.43	288.15	-0.05	3.0 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl-glucuronide)		875	8.43	288.15	n/a	3.0 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl-glucuronide) isomer 1	42	897	6.82	464.28	-0.18	9.0 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl-glucuronide) isomer 2		880	6.82	464.28	-0.18	9.0 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl-glucuronide) isomer 2	52	995	8.05	464.25	-0.15	8.2 E7	MS2/MS3
Chavicine-M (demethylenyl-methyl-glucuronide) isomer 1		993	8.05	464.25	-0.15	8.2 E7	MS2/MS3
Citalopram	51	981	7.90	325.18	-0.07	1.2 E9	MS2/MS3
Citalopram-M (N-oxide)	57	912	8.45	341.07	0.03	1.5 E7	MS2/MS3
Citalopram-M (bis-nor-)	48	857	7.44	297.16	-0.06	7.1 E7	MS2/MS3
Citalopram-M (glucuronide)	43	953	7.01	501.20	-0.10	4.1 E7	MS2/MS3
Clobazam-M/artifact (HO-glucuronide +NH4)	64	810	11.54	510.35	-0.25	5.2 E6	MS2
Corticosterone	47	792	7.40	347.26	-0.21	8.9 E6	MS2/MS3
Creatinine-M/artifact (227)	4	997	0.53	227.01	0.09	2.9 E8	MS2/MS3
Cropropamide	7	782	0.78	241.04	0.06	3.1 E7	MS2/MS3
Desmethyl-Citalopram	50	991	7.70	311.25	-0.19	8.0 E8	MS2/MS3
Diisooctylphthalate	72	978	16.70	391.27	-0.17	3.0 E7	MS2/MS3
Diphenhydramine	49	910	7.56	256.11	-0.28	2.8 E8	MS2/MS3
Diphenhydramine-M/artifact (N-oxide dimer)	55	946	8.29	543.34	-0.34	1.9 E9	MS2/MS3
Isovalerylcarnitine	17	796	3.56	245.91	0.19	4.9 E7	MS2/MS3
Lactose	2	841	0.50	365.12	-0.02	2.0 E7	MS2/MS3
Meptazinol	30	959	4.67	234.12	-0.13	3.8 E8	MS2/MS3
Meptazinol-M (HO-ring-glucuronide)	25	890	4.15	426.26	-0.16	8.9 E8	MS2/MS3
Meptazinol-M (glucuronide)	21	979	3.88	410.26	-0.16	3.8 E9	MS2/MS3
Meptazinol-M (nor-glucuronide)	22	974	4.00	396.27	-0.17	1.2 E9	MS2/MS3
Meptazinol-M (sulfate)	32	972	4.83	314.16	-0.06	4.1 E8	MS2/MS3

Toxtyper versus Toxtyper MWW method Summary

	Toxtyper	MWW (2018)
Total no. of library compounds	1187	> 4500
Metabolites	Some	3000
Polarity	Positive and negative ion mode MS and MS ⁿ	Positive ion mode MS ⁿ spectra only
Retention time information	Yes, for all compounds	No
Use of SPL* for MS ⁿ acquisition	Yes	No, completely untargeted, data dependent acquisition
Identification based on	Precursor <i>m/z</i> MS ⁿ spectral information Retention time	Precursor <i>m/z</i> MS ⁿ spectral information Related Metabolites

Toxtyper users
 and their main applications

Selected Toxtyper References

Forensics/Clinical – Forensics – Clinical – Police

- Dr. Michael Böttcher, MVZ Labor Dessau GmbH, Germany
- **Dr. Eric Franssen,** Onze Lieve Vrouwe Gasthuis OLVG Amsterdam, Netherlands
- Dr. George W. Hime, Miami Dade County Medical Examiner, USA
- **Prof. Dr. Thomas Krämer**, Forensic & Pharmacology, Zürich, Switzerland
- Dr. Natalia Krupina, Moscow Regional Bureau of Forensic Medicine, Russia
- **Prof. Dr. Volker Auwärter**, Jürgen Kempf, Laura Huppertz; Institute of Forensic Medicine Freiburg; Germany
- · Dr. Ivana Černá, Ústřední vojenská nemocnice, Praha, Česká republika
- Prof. Markus R. Meyer, (Prof. Dr. Dr. Hans Maurer), Experimental & Clinical Toxicology, Homburg, Germany
- **Prof. Dr. Wieland**, Katharinenhospital, Stuttgart, Germany → SYNLAB Leinfelden
- Prof. Dr. Denis Hochstrasser, Dr. Pierre Lescuyer; Hôpitaux Universitaires de Genève, Switzerland

Selected Toxtyper References

Forensics/Clinical – Forensics – Clinical – Police

- Dr. Christian Vidal, State Police (LKA) Lower Saxony, Germany
- Dr. Michael Pütz, Dr. Lars Müller, Federal Police (BKA) Wiesbaden, Germany
- Colonel Dr. Theerin Sinchai, Royal Thai Police, Thailand
- Dr. Kristian Wittke, State Police (LKA) Berlin, Germany

Dr. Michael Böttcher, MVZ Labor Dessau

User Profile

- Biggest private drug testing lab in Germany (Limbach group)
- Therapeutic drug monitoring, drugs of abuse testing, workplace drug testing, intoxication cases, clinical drugs testing, especially for addiction medicine.
- Use of mainly GC-MS for the General Unknown Screening before Toxtyper

Toxtyper value for the general unknown screening (GUS)

- Rapid sample preparation for urine samples: no hydrolysis, no derivatization
- Comprehensive MWW library including metabolites (glucuronides!!!)
- Ease of training and simple data evaluation
 - saves time and money by increasing through-put
 - > facilitates overnight and weekend service, e.g. in case of intoxications

Since 2016 a second Toxtyper system is in use for saliva screening.

Dr. Michael Böttcher, MVZ Labor Dessau

Bruker "Customer Insight"

LC-MS for Toxicology: Pushing the Limits of Speed and Sensitivity in Drug Screening

"We were extremely impressed with the sensitivity, ease of use and rapid sample preparation."

Ground-breaking LC-MS solutions enable general unknown analysis of drugs in biological samples, at the specialized laboratory of Dr. Michael Böttcher, MVZ Labor-Dessau GmbH

Dr. Michael Böttcher's specialist medical laboratory uses cutting-edge toxiconstrumentation to offer screening services for clinics and organizations Europe.

"We rely on Bruker's robust LC-MS/MS solution, the ToxtyperTM, to rapidly biological samples for drugs and drugs of abuse, with unprecedented accuracy.

"Post-run time is also greatly reduced on the Toxtyper™ compared to GC-MS.

Data-mining is more efficient, and you don't need as much experience."

Dr. Michael Böttcher, MVZ Labor Dessau

Streamlining sample preparation: GC-MS vs. Toxtyper

Timetable for GC/MS (1 urine sample)

- Enzymatic hydrolysis: 2.25 h

- Extraction: 0.60 h

- Derivatization: 0.30 h

- Chromatographic run + cooling: 0.30 h (17 min +2 min)

3.45 h = 3 h 25 min

- -- All sample preparation steps with different recovery
- -- Different "on board" stability for the different substances
- -- Urine samples to be analysed batchwise
- -- Acidic substances need separate extraction and derivatization

Timetable for Toxtyper (1 sample)

- Enzymatic hydrolysis:
- Extraction: 0.50 h
- Derivatization: -
- Chromatographic run: 0.50 h (TT-

1.00 h

"It became clear that the hydrolyzing process for urine analysis is really limiting in GC-MS. If you can avoid it, it's a big step forward. Oral fluid is such a clean matrix; the Toxtyper™ can achieve extreme sensitivity, which was unexpected at the beginning."

Allows continuous analysis for all kind of samples

- -- No extraction losses
- -- No additional stability problems
- -- Glucuronides detectable (MWW 2014 library)
- Rapid sample preparation enables random access for urgent samples.
- > For GC-MS this is uneconomical as sample prep is cumbersome and thus done batch-wise.

Prof. Dr. Wieland / Dr. Shipkova

User Profile

- Central Institute for Laboratory Medicine and Clinical Chemistry,
 Klinikum Stuttgart
- Toxtyper was purchased in 2016 by Prof. Wieland and Dr. Shipkova

Toxtyper value

- Use of Toxtyper for screening of drugs and toxins in blood, saliva and urine.
- Replacement of GC-MS and a couple of targeted LC-MS/MS methods, e.g. for benzodiazepines, pregabalin and as well as synthetic opioids
- "The Toxtyper is user-friendly, provides a reasonable solution for a 24 h/365 day emergency setting, and will not overburden the technical skills of laboratory technicians with minimal LC-MS experience"

 1)

In 2018 Prof. Wieland and Dr. Shipkova changed to SYNLAB (Leinfelden) and purchased a Toxtyper to offer the same analytics at the new site.

1) Clinical Mass Spectrometry 4–5 (2017) 11–18

Identification and detection limits in urine

Analyte	LLOI/LLOD Toxtyper "MWW" [µg/L]	LLOI/LLOD Toxtyper "DOAL" [µg/L]	Cut Off Immunoassay [µg/L]	LLOD of GC- or LC with MS Detection [µg/L]
Acetylcodeine Amphetamine Benzoylecgonine Methadone Nordiazepam Sufentanil	11/40 n.d. 22/50 3/5 80/200 2/10	10/20 100/200 9/10 2/5 50/100 1/1	300 500 300 300 200 n.a.	10 150 75 ¹ 40 125
Pregabalin	430/2000	430/500	n.a.	200

Urinary creatinine concentrations were between 50 and 350 mg/dl. n.d. = not determined; n.a. = not applicable. LLOI = lower limit of identification; LLOD = lower limit of detection.

Simplified automated sample preparation for urine with Tecan robot: Hydrolysis, precipitation (incl. addition IS), 10fold dilution

MWW: Maurer/Wissenbach/Weber method and library

DOAL Toxtyper drugs of abuse method and library (83 compounds)

¹ confirmation by GC-MS was based on cocaine detection.

^{*} LLOI was calculated, LLOD was experimentally established.

Publications on urine (2017) and oral fluid screening (2018)

Contents lists available at ScienceDirect

Clinical Mass Spectrometry

journal homepage: www.elsevier.com/locate/clinms

Detection of drugs of abuse in urine using the Bruker Toxtyper™: Experiences in a routine clinical laboratory setting

M. Ott, K. Berbalk, T. Plecko, E. Wieland, M. Shipkova*

Zentralinstitut für Klinische Chemie und Laboratoriumsmedizin, Klinikum Stuttgart, Stuttgart, Germany

ARTICLEINFO

Keywords: Drugs of abuse screening Assay performance Ion trap mass spectrometry Routine laboratory

ABSTRACT

Urine screening can be used to detect misuse of illicit drugs and validate opioid replacement therapy comp It is common that immunochemical assays are combined with GC-MS for these applications. Bruker has re released an ion trap mass spectrometer, called Toxtyper™, with the potential to replace current screen gorithms to detect drug misuse.

Here, we compare our current strategy of urine screening for misuse of cannabis, amphetamines, compiates, benzodiazepine, methadone, sufentanil, and pregabalin to the Toxtyper protocols provided manufacturer.

The analytical performance of the instrument was determined on a selected drug panel and with 18st samples being compared to establish concordance between our currently established approach and the To

The lower limits of detection and identification for acetylcodeine, amphetamine, benzoylecgonine, a done, and nordiazepam were below the common cut-offs for immunological screening assays and compar GC-MS. Imprecision and accuracy, both within- and between-series, were consistently < 25%. To screening for pregabalin and sufentail was less sensitive than a targeted LC-MS/MS assay. Concordance n predefined criterion of > 90% for all drugs, except for pregabalin. Cannabis misuse could not be detected the limited sensitivity of the Toxtyper assay protocols used and the inherent imprecision of the assay.

Our study has revealed that a considerable portion of our current time-consuming protocol for scr drugs of abuse in urine, based on the combination of multiple analytical methods, could be consolidated Toxtyper for a majority of the most-relevant substances in our patient population.

Ther Drug Monit. 2018 Jun 6. doi: 10.1097/FTD.00000000000544. [Epub ahead of print]

Evaluation of an Ion Trap LC-IT/MS Instrument (Toxtyper) for Drug of Abuse Screening in Oral Fluid.

Plecko T1, Berbalk K, Wieland E, Shipkova M.

Author information

1 Zentralinstitut für Klinische Chemie und Laboratoriumsmedizin, Klinikum Stuttgart, Stuttgart, Germany.

Abstract

BACKGROUND: Oral fluid (OF) is increasingly used as an alternative sample matrix in drug of abuse (DOA) screening. Screening is commonly performed by immunoassays and results confirmed using laborious GC-MS based methods. Therefore, an easy to operate ion trap mass spectrometric (IT-MS) commercial screening method (Toxtyper, Bruker Daltronik, Bremen, Germany) combined with a laboratory-developed sample preparation procedure have been evaluated for their application to OF.

METHODS: Oral fluid samples were subjected to protein precipitation followed by HybridSPE-phospholipid extraction. Chromatographic separation was achieved by ultra-high performance liquid chromatography (UHPLC); MS2/MS3 spectra were recorded by IT-MS and analyzed using a library provided by the manufacturer (Bruker Daltronik). The lower limit of detection (LLOD), linearity, imprecision, inaccuracy, and specificity (interferences, matrix effects) were investigated for methadone, buprenorphine, pregabalin, fentanyl, amphetamine, MDMA (3,4-Methylendioxy-N-methylamphetamin), cocaine, acetylcodeine and nordiazepam, after

Prof. Maurer, Experimental and Clinical Toxicology, Saarland University

WILEY

Prof. Hans Maurer

RESEARCH ARTICLE

Blood plasma level determination using an automated LC-MSⁿ screening system and electronically stored calibrations exemplified for 22 drugs and two active metabolites often

Achim T. Caspar | Markus R. Meyer | Hans H. Maurer D

requested in emergency toxicology

Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Germany

Correspondence

Hans H. Maurer, Department of Experimental and Clinical Toxicology, Saarland University, D-66421 Homburg, Germany Email: hans.maurer@uks.eu

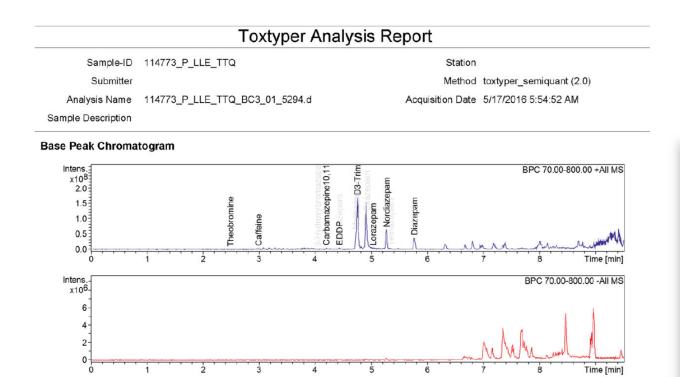
Abstract

Fast and comprehensive qualitative and quantitative methods preferably by gas chromatography-mass spectrometry (GC-MS) and/or liquid chromatography-mass spectrometry (LC-MS) are needed to support the (differential) diagnosis of acute poisonings in emergency toxicology. One option is a commercially available qualitative screening solution based on LC-MSⁿ (Bruker Daltonik Toxtyper™, TT). Identified and toxicologically relevant compounds should be quantified to assess severity of poisonings. The aim of the present study was to test the TT system for quantification simultaneous with the screening process in blood plasma exemplified for 22 relevant drugs and two active metabolites. A standard liquid-liquid extraction was used for sample work-up followed by 1:5 dilution of the final extracts. They were analyzed using the TT system consisting of a Bruker amaZon speed ion trap and a Thermo Fisher Dionex Ultimate 3000 LC system. Plasma levels were assessed using full-scan data and an electronically stored five-point calibration. The calibration model was linear for the studied ranges and could be used for at least two months. The method was validated according to international guidelines. The acceptance criteria recommended for emergency toxicology for accuracy and precision were fulfilled for all tested compounds, but bromazepam, lorazepam, oxycodone, and prothipendyl could reliably be determined only above the therapeutic range. In conclusion, the presented procedure allowed the combination of a comprehensive LC-MSⁿ screening with fast automated assessment of plasma levels for emergency toxicology of tested compounds.

Received: 30 May 2018 DOI: 10.1002/dta.2466 Revised: 6 July 2018

Accepted: 9 July 2018

Calibrator and QC concentrations of 24 target compounds


TABLE 1 Final plasma concentrations in μg/L of the analytes in calibrators (Cal 1–5) and quality control samples (QC) LOW, therapeutic (TH), HIGH, and dilution (DILU) as well as the used weightings of linear calibration model and the therapeutic ranges according to Schulz et al.³²

Analyte	Weighting	Cal 1	Cal 2	Cal 3	Cal 4	Cal 5	QC LOW	QC TH	QC DILU	QC HIGH	Therapeutic Range
9-Hydroxyrisperidone	1/x ²	100	500	1,000	1,500	2,000	120	100	800	1,600	10-100
Amitriptyline	1/x ²	100	500	1,000	1,500	2,000	120	200	800	1,600	50-200
Bromazepam	equal	1,000	1,500	2,000	2,500	3,000	1,200	200	1,200	2,400	50-200
Carbamazepine	$1/x^2$	2,500	5,000	10,000	15,000	20,000	3,000	12,000	-	16,000	2,000-12,000
Citalopram	$1/x^2$	100	500	1,000	1,500	2,000	120	200	800	1,600	20-200
Clozapine	$1/x^2$	100	500	1,000	1,500	2,000	120	600	800	1,600	100-600
Codeine	$1/x^2$	250	500	1,000	1,500	2,000	300	250	800	1,600	30-250
Diazepam	equal	500	1,000	1,500	2,000	2,500	600	2,000	1,000	2,000	200-2,000
Diphenhydramine	equal	500	1,000	1,500	2,000	2,500	600	1,000	1,000	2,000	100-1,000
Doxepin	$1/x^2$	100	500	1,000	1,500	2,000	120	150	800	1,600	20-150
Fluoxetine	1/x	250	500	1,000	1,500	2,000	300	500	800	1,600	120-500
Lorazepam	equal	500	1,000	1,500	2,000	2,500	600	250	1,000	2,000	20-250
Mirtazapine	$1/x^2$	150	500	1,000	1,500	2,000	180	300	800	1,600	50-300
Nordiazepam	equal	750	1,000	1,500	2,000	2,500	900	800	1,000	2,000	200-800
O-Desmethyltramadol	$1/x^2$	100	500	1,000	1,500	2,000	120	300	800	1,600	100-300
Oxazepam	equal	1,000	1,500	2,000	2,500	3,000	1,200	2,000	1,200	2,400	500-2,000
Oxycodone	$1/x^2$	250	500	1,000	1,500	2,000	300	100	800	1,600	5-100
Paracetamol (acetaminophen)	$1/x^2$	2,500	30,000	60,000	90,000	120,000	3,000	20,000	-	96,000	10,000-20,000
Prothipendyl	$1/x^2$	50	125	250	375	500	60	10	200	400	5-10
Quetiapine	1/x ²	100	500	1,000	1,500	2,000	120	500	800	1,600	100-500
Risperidone	1/x	50	125	250	375	500	60	60	200	400	20-60
Tramadol	1/x	250	500	1,000	1,500	2,000	300	300	800	1,600	100-300
Venlafaxine	1/x ²	100	500	1,000	1,500	2,000	120	400	800	1,600	100-400
Verapamil	1/x ²	100	500	1,000	1,500	2,000	120	350	800	1,600	50-350

Calibration covers the therapeutic to toxic range

Toxtyper Results and Conclusions

Library Search Results

Cmp Name	Cmp#	Purity'	RT [min]	d RT	m/z [Da]	d m/z	Intensity	Semi-quant Conc.	ID	Comment
3-Hydroxybromazepam	6	985	4.05	-0.04	331.94	0.06	6.9 E5		MS2/MS3	MS2 unspecific
Bromazepam	9	976	4.44	-0.09	315.91	0.10	3.6 E6	<1000 ng/mL	MS2	
Caffeine	2	971	3.00	-0.09	194.86	0.23	4.2 E6		MS2/MS3	
Carbamazepine	14	990	4.73	-0.15	236.89	0.21	3.3 E7	3089 ng/mL	MS2	
Carbamazepine10,11-epoxide	7	918	4.21	-0.08	252.94	0.16	5.0 E6		MS2	
D3-Trimipramine	15	922	4.75	-0.22	298.14	0.10	1.8 E8		MS2	
Diazepam	20	936	5.76	-0.16	285.00	0.08	4.1 E7	2299 ng/mL	MS2	
EDDP	8	970	4.44	-0.20	278.10	0.09	5.9 E6	270	MS2	
Lorazepam	17	899	5.02	-0.15	320.97	0.05	6.4 E5	<500 ng/mL	MS2/MS3	MS2 unspecific
Methadone	13	956	4.72	-0.06	310.14	0.08	5.8 E7		MS2/MS3	
Nordiazepam	18	977	5.27	-0.10	270.92	0.14	6.6 E7	>2500 ng/mL	MS2	
Oxazepam	16	977	4.92	-0.15	286.88	0.18	4.0 E6	<1000 ng/mL	MS2/MS3	MS2 unspecific
Temazepam	19	977	5.34	-0.17	300.96	0.11	4.3 E6		MS2/MS3	MS2 unspecific
Theobromine	1	900	2.49	-0.10	180.84	0.23	1.5 E6		MS2	

4 | CONCLUSIONS

The current method allowed a reliable and fast blood plasma screening and level assessment for 24 analytes in 24/7 emergency toxicology.

The method was successfully integrated into the Toxtyper™ screening solution and validated according to international guidelines and recommendations. The blood levels of the analytes could be assessed automatically and quickly, based on a stored five-point calibration model and were given together with the blood screening results in a pdf report. However, the method was limited to blood level assessment in emergency toxicology to identify acute overdosing or poisoning.

George W. Hime, Elisa Shoff Miami Dade Medical Examiner

George W. Hime, M.S., Assistant Laboratory Director and Elisa Shoff, Toxicologist II, Miami-Dade Medical Examiner Dept. Toxicology Laboratory, Miami, USA

"The Toxtyper has been our go-to instrument for postmortem casework containing novel substances, substances that are otherwise undetectable via GCMS, and unknown substances we have not yet seen in the lab. This instrument has been a blessing to our laboratory over the last several years of dealing with the flood of new illegal drugs in Miami. From synthetic cathinones to synthetic fentanyls we have detected and identified them all reliably and with high confidence."

Benefits of using Toxtyper:

"Reliable, rugged, sensitivity beyond expectation, and ease of maintenance and operation are all features of this instrument. Full spectral MS3 data at pg/mL sensitivities in postmortem whole blood or tissues cannot be beat in our work by any other instrument."

Toxtyper in the "opioid crisis":
Use of smaller sub-libraries and
SPE sample preparation for
urine, blood and tissue samples
to enhance sensitivity for the
detection of highly potent NPS
such as designer opioids.

George W. Hime, Elisa Shoff Miami Dade Medical Examiner

Qualitative Identification of Fentanyl Analogs and Other Opioids in Postmortem Cases by UHPLC-Ion Trap-MSⁿ

Elisa N. Shoff*, M. Elizabeth Zaney, Joseph H. Kahl, George W. Hime, and Diane M. Boland

Miami-Dade County Medical Examiner Department, 1851 NW 10th Avenue, Miami, FL 33136, USA

from 0.1 to 5 ng/mL, with a majority having

*Author to whom correspondence should be address: Table III. Comparison of number of positive cases for synthetic opioids on LC-Ion Trap MSn and GC-MS with respective limits of detection

Abstract	Analog	No. of cases detected by LC-Ion Trap MS ⁿ	No. of cases detected by GC–MS	Limits of detection on LC-Ion Trap MS ⁿ (ng/mL)	Limits of detection on GC–MS (ng/mL)
Since 2013, the Miami-Dade County Medica		by Le foir Trap Mis	<i>b</i> , <i>Ge</i> 1415	Le fon Trap ivio (fighte)	on de mo (ng/mz)
the number of opioid-related deaths. The manyl into the local heroin supply. From 2014	Acetyl fentanyl	13	4	0.2	5
increase in fentanyl-related deaths, followed	Beta-hydroxythiofentanyl	9	0	0.1	a
novel fentanyl analogs were identified in r		3	1	0.2	0.5
acetyl fentanyl. In 2016, four additional fen		134	30	0.1	1
butyryl fentanyl, furanyl fentanyl and carfer	Furanyl fentanyl	37	9	0.5	2.5
to address this epidemic, a method was de-	4-Fluoroisobutyryl fentanyl	22	16	0.5	1
analgesic compounds in postmortem sampl	U-47700	4	1	0.5	_
ion trap mass spectrometry with MS ⁿ capat					

^aBeta-hydroxythiofentanyl cannot be detected via GC-MS. specimens from ~500 postmortem cases we.

initial screening results. Of those cases, 375 were positive for illicit fentanyl and/or one or more fentanyl analogs. Due to the potency of these compounds, they were almost always included in the cause of death. Worth emphasizing and extremely alarming is the detection of carfentanil in 134 cases, 104 of which were initially missed by gas chromatography mass spectrometry. By incorpoJournal of Analytical Toxicology, 2017;41:484–492

doi: 10.1093/jat/bkx041

Advance Access Publication Date: 13 June 2017

Article

September 2019 33

User Profile

- Leading national institute in forensic toxicology
- World-renowned expertise in the analysis of New Psychoactive Substances (NPS)

 Drug testing (forensic and clinical), intoxication and death case analysis, full post-mortem toxicology, drug market monitoring

Toxtyper value

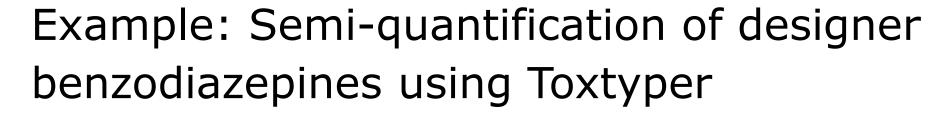
- Comprehensive and cost-effective pre-screening
- Quick and easy update of Toxtyper libraries to keep pace with emerging NPS
- Use for all kind of biological samples as well as for drug preparations

"It is often the case that, if they could, customers would always like to have the whole picture of xenobiotics present in the sample. But money is a restriction for them: if you want to conduct a full toxicological analysis, the price will be very high. This is why it's valuable to us to be able to offer broad screening with the ToxtyperTM, covering almost all relevant analytes, at a lower price. It's a benefit to us and to them." explains Prof. Dr. Auwärter.

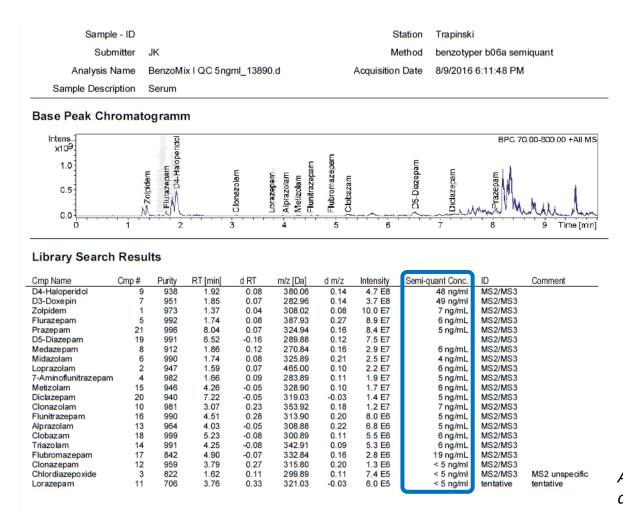
From: Bruker Customer Insights

Example: Semi-quantification of designer benzodiazepines using Toxtyper

Dr. Jürgen Kempf


- Use of a benzodiazepine sub-library
- LODs in serum between 1-25 ng/mL
- Two exceptions: 3-OH-Bromazepam and Demoxepam (50 ng/mL)

Name	LOD [ng/mL]
2-OH-Ethylflurazepam	25
3-OH-Bromazepam	50
3-OH-Flubromazepam	25
3-OH-Phenazepam	25
7-Aminoclonazepam	10
7-Aminoflunitrazepam	1
7-Aminonitrazepam	1
Adinazolam	5
α-OH-Alprazolam	5
α-OH-Midazolam	5
α-OH-Triazolam	5
Alprazolam	1
Bromazepam	10
Chlordiazepoxide	5
Clobazam	1
Clonazepam	5
Clonazolam	5
Cloniprazepam	1
Clotiazepam	1
Delorazepam	5


Name	LOD [ng/mL]
Demoxepam	50
Desalkylflurazepam	10
Deschloroetizolam	1
Diazepam	5
Diclazepam	1
Etizolam	1
Flubromazepam	5
Flubromazolam	5
Fludiazepam	10
Flunitrazepam	1
Flunitrazolam	5
Flurazepam	1
Fonazepam	5
Loprazolam	1
Lorazepam	5
Lormetazepam	5
Meclonazepam	5
Medazepam	5
Metizolam	1
Midazolam	1

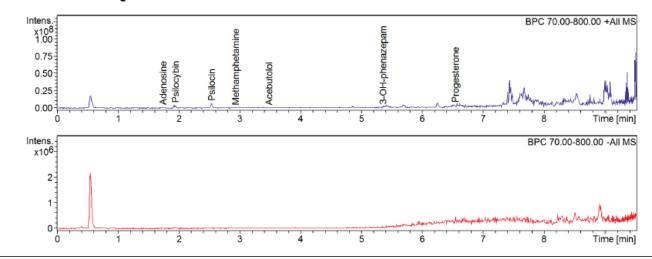
Norflunitrazepam Nifoxipam Nimetazepam Nitrazepam Nitrazolam Norclobazam Nordazepam Oxazepam Phenazepam Prazepam Pyrazolam	5 - 10 25 5 10 5 25
Nimetazepam Nitrazepam Nitrazolam Norclobazam Nordazepam Oxazepam Phenazepam Prazepam	25 5 10 5 25 5
Nitrazepam Nitrazolam Norclobazam Nordazepam Oxazepam Phenazepam Prazepam	25 5 10 5 25 5
Nitrazolam Norclobazam Nordazepam Oxazepam Phenazepam Prazepam	5 10 5 25 5
Norclobazam Nordazepam Oxazepam Phenazepam Prazepam	10 5 25 5
Nordazepam Oxazepam Phenazepam Prazepam	5 25 5
Oxazepam Phenazepam Prazepam	25 5
Phenazepam Prazepam	5
Prazepam	
Pyrazolam	1
i yrazolaiti	5
RO-5-4864	10
Temazepam	1
Tetrazepam	5
Triazolam	5
Zaleplone	5
Zolpidem	1
Zopiclone	5

Application Note LCMS 130: Detection and semi-quantitative determination of designer benzodiazepines in serum using LC-MSn

After a one-point calibration, qualitative and semi-quantitative results can be obtained from the same Toxtyper analysis

Application Note LCMS 130: Detection and semi-quantitative determination of designer benzodiazepines in serum using LC-MSn

State Police Lab (LKA) Brandenburg "Magic Mushrooms"



Station Toxtyper_2.0

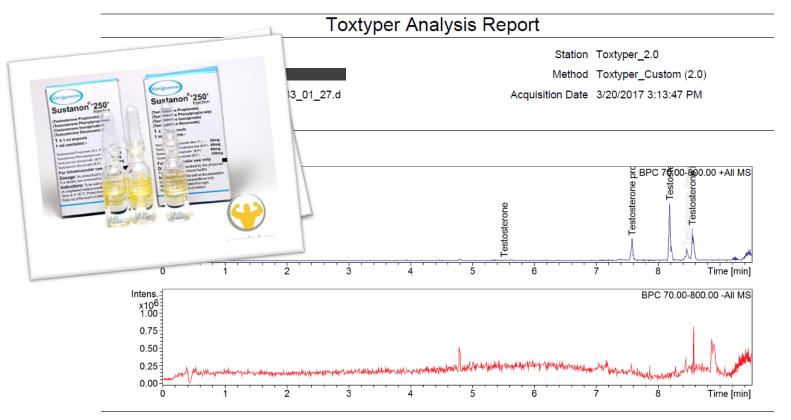
Method Toxtyper_Custom (2.0)

Acquisition Date 3/22/2017 3:17:06 PM

Base Peak Chromatogram

	Ider	ntifica	ation of	
Psilo	cin	and	Psilocy	/bin.

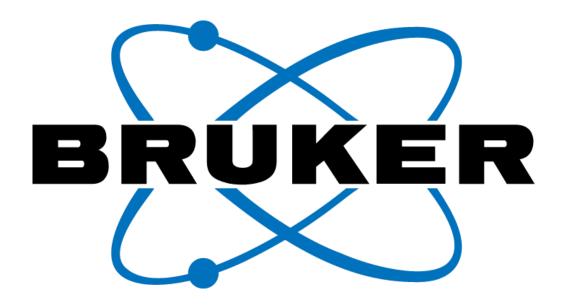
Methamphetamine is due to contamination of the packaging material.


Library Search Results

Cmp Name	Cmp#	Purity'	RT [min]	d RT	m/z [Da]	d m/z	Intensity	ID	Comment
Psilocin	3	872	2.54	-0.06	204.99	0.14	6.8 E6	MS2/MS3	
Psilocybin	2	977	1.94	-0.07	285.04	0.06	3.8 E6	MS2	
Adenosine	1	998	1.74	0.13	268.02	0.08	8.1 E5	tentative	
Progesterone	7	877	6.54	-0.28	315.22	0.01	6.7 E5	MS2	
Methamphetamine	4	986	2.94	-0.14	150.04	0.09	6.1 E5	MS2	
3-OH-phenazepam	6	861	5.36	0.22	367.20	-0.20	5.7 E5	MS2	
Acebutolol	5	870	3.48	0.03	337.21	0.00	3.0 E5	tentative	MS2 unspecific

Data courtesy of Landeskriminalamt Brandenburg (State Police Lab), Eberswalde, Germany

State Police Lab (LKA) Brandenburg "yellow oil sample" → Sustanon®


Identification of

Testosteron and its esters

Library Search Results

Cmp Name	Cmp #	Purity'	RT [min]	d RT	m/z [Da]	d m/z	Intensity	ID
Testosteron phenylpropionate	3	961	8.19	-0.10	421.29	-0.02	1.2 E9	MS2/MS
Testosterone isocaproate	5	939	8.55	-0.13	387.32	-0.04	6.6 E8	MS2/MS
Testosterone propionate	2	966	7.58	-0.13	345.23	-0.01	4.5 E8	MS2/MS
Testosterone decanoate	4	829	8.47	-0.30	443.40	-0.04	2.3 E8	MS2/MS3
Testosterone	1	910	5.51	-0.11	289.18	-0.08	5.7 E6	MS2/MS

Data courtesy of Landeskriminalamt Brandenburg (State Police Lab), Eberswalde, Germany

www.bruker.com

For research use only. Not for use in clinical diagnostic procedures.

39