

VITATOX 2021

Next level of targeted screening, which way to go: faster analysis or more certainty in the results?

Solutions Development – Applied Markets, Bruker, Bremen October 2021

Daniel Vláčil Bruker s.r.o.

QTOF Portfolio - Instruments

Improve identification in difficult matrix

- Increase sensitivity due to VIP-HESI source
- Increase robustness by using active exhaust
- Decrease run time by using fast QTOF scans, 20 to 5 minutes
- Increase confidence by using tims technology
- Increasing separation power by using 4th dimension Ion Mobility

VIP-HESI

VIP-HESI Technology

Innovation with Integrity

Introduction

- A new Dual source design based on the Bruker EVOQ triple quadrupole source combines ESI and APCI
- The new source is compatible with Bruker timsTOF and QTOF systems and can replace the standard ESI and APCI sources

Standard ESI source

VIP-HESI @ impact II & timsTOF pro

- Very sensitive and robust VIP-HESI source with active exhaust available for the timsTOF/QTOF product lines
- Well suited for high flow (1ml/min) applications with dirty matrices like urine, QuEChERS extracts or wastewater
- Average Gain > 5 times sensitivity
- VIP-HESI Technology:
 - No loss and fragmentation of compounds due to heat
- Active Exhaust reduces:
 - matrix effects
 - source contamination and memory effects in source

VIP-HESI @ timsTOF pro

VIP-HESI analytical data

Forensic Tox Mix (26 substances), (500-700) μ L/min LC flow gradient, timsTOF Pro, TIMS off MW Range 135 – 455 amu

• High intensity gains between VIP-HESI and standard ESI sources are reproducible, specification are at lower level. 50fg reserpine 1:200 S/N.

VIP-HESI APCI analytical data

Forensic Tox Mix VIP-HESI APCI (26 substances), (500-700) µL/min LC flow gradient, timsTOF Pro, TIMS off MW Range 135 – 455amu

Example calibration curve Lyso PE 18:1 (d7) VIP-HESI vs. ESI negative mode

VIP-HESI source – Vacuum Insulated Probe

Problem of general heated ESI source:

 Low sensitivity because of thermal breakdown of thermally fragile compounds due to LC eluent 'over-heating' before the nebulization process.

Bruker's technical solution:

Vacuum Insulated Probe Heated-ESI (VIP-HESI)

 A layer of vacuum between the ESI probe heater and the LC-eluent dramatically reduces heat transfer from the hot ceramic heater to the sample.

User benefit provided by Bruker:

- Less thermal degradation
- Higher sensitivity

Active Exhaust

High wattage ceramic heater (1.5 kw) ensures complete desolvation

Source housing gases are streamlined and evacuated

Nebulized gas accelerates towards the low-pressure region of the Active Exhaust & exits the system

Low pressure region pulls all exhaust gases through the large exhaust opening and out of the mass spec

> Exhaust opening sets new industry standard, allowing for unrestricted evacuation of nebulized gases.

- 30 mL of blue food dye infused
- No accumulation anywhere inside the ion source chamber
- > Successful elimination of recirculation of nebulized gases
 → More efficient ionization

5X gain

Omethoate: 0.5 ppb in Onion 20min method

Standard ESI

🔍 🍭 🛦 🛕 🖄 🥾 🗡 🗖 A Mobilogram 240 Pesticides in Solvent 0.5ng_ml delta3_50_98_1_8206 x10² Omethoate - C₅H₁₂NO₄PS -5.0 - 214 - M+nH (*) (PI) (g) 215 - M+nH+1 (*) 125 - 124.982 (*) (bbCID) 4.0 - 109 - 109.005 (*) (bbCID) 127 - 127.015 (bbCID) ntensity 143 - 142.993 (bbCID) 3.0 - 155 - 154.993 (bbCID) 2 104 - 104.016 (bbCID) Ö 79 - 78.994 (bbCID) 2.0 - 183 - Omethoate Fragm 183 0.64 1.0 0.0 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 1/K₀ [V*s/cm²] \$ ₽ Q 🛝 🛝 🎶 🛷 Ѧ 州 🏔 🖄 🖍 🖳 🗖 🗛 Chromatogram 🔀 240 Pesticides in Solvent 0.5ng_ml delta3_50_98_1_8206 x10³ Omethoate - C₅H₁₂NO₄PS ethó 214 – M+nH (*) (PI) (q) 3.0 -215 - M+nH+1 (*) 125 - 124.982 (*) (bbCID) 2.5 - 109 - 109.005 (*) (bbCID) ensity 127 - 127.015 (bbCID) 2.0 _ 143 - 142.993 (bbCID) 155 - 154.993 (bbCID) Ē 104 - 104.016 (bbCID) 1.5 -79 - 78.994 (bbCID) 9effby 183 – Omethoate Fragm 183 1.0 0.5 0.0

3.3 3.4 3.5

3.6

3.7

3.8

3.9

4

VIP-HESI

Time [min]

TIMS Separation Principle

TIMS Separation Principle

TIMS Separation Accumulation

TIMS Separation Elution

CCS values to differentiate isomers

.OH

ΌH

OH

Example: IMS separation of flavonols Quercetin and Morin (MW 302) – generate individual MS/MS spectra of both analytes for increased confidence and structural information.

Separating Tramadol and O-Desmethylvenlafaxine using TIMS (they have nearly the same fragments)

PESTICIDES @ TIMSTOF PRO

Pesticides in difficult matrix

INTRODUCTION

Survey view and BPCs for 240 pesticides (100 ppb) in onion vs. solvent

Pesticide screening in difficult matrix

On the previous slide a "blank" sample was shown, within this matrix TargerScreener will have to detect a few hundred components on low level. This is done with data in depended acquisition to ensure no missing peaks (false negatives).

By using data in depending acquisition, a retrospective view is possible, more and more companies would like to look back if they find a new contamination in their samples.

The "standard" 20 minute method was long seen as the fastest possible reliable method, using a 5 minute fast method did show almost the same performance

By using VIP-HESI and additional timsTOF Ion Mobility separation this combination can create a 5 minute method with even better performance as the "conventional" 20 minute method. This new methods is currently under development.

Faster method

Elute Pump (Main) method editor - 🗆 🗙									
Common			Solvents			Traces	_		
Minimum pressure:	2	bar	Solvent pump A:	Pump solvent 1	\sim	Show pressure trace: 🗹 📕			
Maximum pressure:	1034	bar	Solvent pump B:	Pump solvent 1	\sim	Show fraction A trace: 🗹 📃			
Equilibration time:	0.00	min				Show fraction B trace: 🗹 📕			
						Show flow trace:			
Time table									
Line: Time (min):	Flow (mL/min):	%A:	%В:	4	- 11	Advanced			
01 0.00	0.500	95.0	5.0		100		•	!	5
02 0.25	0.500	95.0	5.0						
03 0.50	0.500	50.0	50.0		80 -				4
04 3.80	0.600	0.1	99.9	8	60			;	3 🚽
05 3.81	0.650	0.1	99.9	tion B		r l			
06 4.50	0.720	0.1	99.9	Frac	40 -				2 <u>m</u> .
07 4.51	0.500	95.0	5.0		20				1
08 5.00	0.500	95.0	5.0				1		_
					0+-	1 2 3 4	5	+(6	0
						Time (min)			
						OF	¢.	Can	.cel

- Mobile phase solvents based on standard TargetScreener
- Eluent A: Water/methanol (99T/1T)+ 5 mM NH4-formate + 0.01% formic acid
- Eluent B: Methanol + 5 mM NH4formate + 0.01 % formic acid
- Column: Bruker IntensitySolo-2 (1.8 µm), 100 x 2.1 mm
- Oven *Temperature: 50°C*
- Injection volume: 2 μL

6Hz MS Method

Analyte distribution with the 5min method

RSD

Thiacloprid 5 min method, full scan on MS and Ion Mobility

Clean EICs Target ion and all qualifier ions detected at 1 ppb

Filtering on CCS, all data is available

EIC 1/K0 = 0.01 V*s/cm2 Very narrow mobility filter

EIC 1/K0 = 0.02 V*s/cm2 Moderate mobility filter

EIC 1/K0 = 1.00 V*s/cm2 No mobility filter

Trifloxystrobin in Onion : TargetScreener TIMS off

Trifloxystrobin in Onion: TargetScreener TIMS on

PESTICIDES @ TIMSTOF PRO

Pesticides in difficult matrix

Thiacloprid 5 min method

Smaller CCS (Ion Mobility) filter used

Due to 100% duty cycle time technology the sensitivity of timsON and timsOFF is comparable, addition CCS separation increases signal to noise.

EIC 1/K0 = 0.02 V*s/cm2

EIC 1/K0 = 1.00 V*s/cm2 (no CCS filter)

Thiacloprid 5 min method and using Ion Mobility filter

1 ng/ml in Onion

10 ng/ml in Onion

Thiacloprid 5 min method and using Ion Mobility filter

1 ng/ml in Onion

10 ng/ml in Onion

Thiacloprid 5 min method and using Ion Mobility filter

Thiachloprid Quant in Onion 1ng/ml - 500 ng/ml --- 5 min method !

Spiroxamine2 5min: Peak easier to integrate by using CCS filter

Dual peak, disturbing proper integration of component of interest

EIC 1/K0 = 0.01 V*s/cm2

EIC 1/K0 = 0.02 V*s/cm2

EIC 1/K0 = 1.00 V*s/cm2 (no CCS filter)

Conclusion

- Faster methods can be use with current technology
- Increased level of certainty can be obtained by current timsTOF technology
- The new combination of VIP-HESI and timsTOF needs to be validated, this is currently work in progress.
 - VIP-HESI is more sensitive, also in difficult matrix
 - CCS filter does increase signal-to-noise with proper settings
 - Ion Mobility does help to get better integration in difficult matrix
 - Fast QTOF scanning give the possibility to decrease run times
- Aim is to develop a validated 5 minute method which is faster and needs less manual interaction and less reviewing. This would result is lower cost per sample and higher throughput, increasing the quality of data.

Innovation with Integrity

Innovation with Integrity