


# **Methods for Environmental Samples**

# **Application Note**

Atomic Absorption

# Introduction

The United States Environmental Protection Agency (EPA) requires the determination of important trace elements in a variety of environmental samples. Graphite furnace atomic absorption methods are recommended for some elements including As, Se, Cd, Pb, Tl, Sb, Ag, Be and Cr. Graphite furnace analyses can be difficult due to chemical and spectral interferences. Quantification in atomic absorption requires that for a given analyte mass the signal be identical in the reference standard and in the sample. Chemical interferences occur when sample matrix constituents alter the atomization efficiency of the analyte element resulting in a matrix dependent analyte signal. Chemical (or matrix) interferences can be minimized by the use of platform atomization techniques and appropriate matrix modifiers.

The platform technique involves the use of a graphite platform which is inserted into the graphite furnace tube. The sample is deposited on the platform instead of the furnace wall, and during atomization the platform temperature lags the furnace wall temperature by several hundred degrees. Under these conditions, the analyte compounds are not vaporized until the furnace wall and gaseous environment have approached a steady-state temperature. This minimizes chemical interferences.

The addition of a matrix modifier can be used to alter the volatility of either the analyte element or a bulk matrix component. The matrix modifier is added to the sample prior to atomization. It can decrease the volatility of the analyte element or increase the volatility of a sample matrix component. Many important environmental elements are relatively volatile (Cd, Pb, As and Se). These elements could be prematurely lost in the graphite furnace temperature cycle resulting in inaccurate quantification. With the addition of an appropriate matrix modifier these elements can be stabilized to higher temperatures. This can greatly reduce matrix interferences.



# Author

L. M. Beach

Non-specific absorption (background) and spectral interferences can also affect the accuracy of graphite furnace analyses. Non-specific absorption is a false signal due to either molecular absorption and/or light scattering. It can be corrected for by accurate simultaneous background correction systems (Deuterium or Zeeman). Spectral interferences can occasionally occur. For example, low level selenium determinations in the presence of high levels of iron can be difficult with deuterium background correction due to spectral interferences. The use of Zeeman background correction is superior for some types of samples and is recommended by EPA for the determination of As and Se.

This study outlines graphite furnace (GFAAS) methodology for Agilent SpectrAA Zeeman atomic absorption spectrometers. The important environmental elements As, Se, Cd, Pb, Tl, Sb, Ag, Be and Cr are included. Techniques such as Zeeman background correction, platform atomization, matrix modification and peak area signal measurement were utilized in order to reduce interferences. Results from the analysis of real samples will be discussed.

# Methodology

Table 1 lists the Superfund contract required detection limits (CRDLs) required by the EPA. Quality assurance requirements of the contract lab program specify that one atomic absorption standard must be at the CRDL. A blank and at least three calibration standards must cover an appropriate concentration range. Table 1 lists the standard calibration ranges used in this study. In the case of As, Se, Pb, TI, Sb and Ag, the lowest calibration standard was the specified CRDL. Because of the high sensitivity of the GFAAS technique, calibration standards for Cd. Be and Cr were established with one or more standards below the CRDL. In all cases, one calibration standard was at the contract required detection limit. Appropriate sample dilutions can be used to obtain sample concentraton levels in the range of the calibration standars. In this study four calibration standards were prepared utilizing the dilution capabilities of the GTA-96 programmable sample dispenser. (For As, the four standards were premixed and a constant volume was injected). Platform atomization was used for all determinations except for Cr which required wall atomization. Peak area absorbance measurements were utilized for all elements.

Table 1. Elements Determined by GFAAS — Concentration Ranges

| Element   | Contract required<br>detection limit (µg/L)<br>(CRDL) | Calibration ranges<br>(µg/L)(this study) |
|-----------|-------------------------------------------------------|------------------------------------------|
| Antimony  | 60                                                    | 60–240                                   |
| Arsenic   | 10                                                    | 10–100                                   |
| Beryllium | 5                                                     | 1–10                                     |
| Cadmium   | 5                                                     | 0.5–5                                    |
| Chromium  | 10                                                    | 5–50                                     |
| Lead      | 5                                                     | 5–50                                     |
| Selenium  | 5                                                     | 5–50                                     |
| Silver    | 10                                                    | 10–100                                   |
| Thallium  | 10                                                    | 10–100                                   |

EPA approved matrix modifiers were used for the appropriate elements<sup>\*\*</sup>. The modifier solutions that were used in this study are listed in Table 2.

Table 2. Matrix Modifiers

| Element   | Matrix modifier                                   |
|-----------|---------------------------------------------------|
| Antimony  | 3% NH <sub>4</sub> NO <sub>3</sub>                |
| Arsenic   | 1000 mg/L Ni in 5% HNO <sub>3</sub>               |
| Cadmium   | 1% NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub> |
| Lead      | 1% H <sub>3</sub> PO <sub>4</sub>                 |
| Selinium  | 1000 mg/L Ni in 5% HNO <sub>3</sub>               |
| Thaallium | 1000 mg/L Pd*                                     |

\* Requires the addition of a reducing agent for consistent performance.

Palladium is an EPA recommended modifier for the determination of thallium, however, its effectiveness as a modifier is influenced by its chemical form.

The results of a study using different palladium forms illustrate the important factors for palladium matrix modification in the analyses of real samples. These results are discussed in the following section under thallium.

\*\* The modifiers used in this study are approved by the EPA in SW-846/Test Methods for Evaluating Solid Waste.

# **Furnace Methodology**

The following section presents the furnace programs used in this study. Calibration results and the calibration graph are also shown for most elements. The Hot Inject capability of the GTA-96 was utilized for most of the temperature programs. This allowed the dry portion of the temperature program to be very short (10–30 seconds). Most of the temperature programs were under 1.5 minutes. This resulted in high sample throughput. Long term studies were done with real samples and the results will be discussed in the next section of this publication.

# Selinium

A Photron Super Lamp was used. The matrix modifier was 1000 mg/L Ni in 5%  $HNO_3$ . Calibration standards of 5.0, 10.0, 15.0 and 50.0  $\mu$ g/L Se were auto-mixed from a master standard of 50.0  $\mu$ g/L. The graphite furnace method, calibration results and calibration graph are shown in Figure 1. Figures are appended to the end of this paper.

# Arsenic

A Photron Super Lamp was used. The matrix modifier was 1000 mg/L Ni in 5% HNO<sub>3</sub>. Calibration standards of 10.0, 10.0, 50.0 and 100.0  $\mu$ g/L As were premixed. The graphite furnace method, calibration results and calibration graph are shown in Figure 2. Pre-mixed standards resulted in a more linear calibration graph. Auto-mixing 2  $\mu$ L to 28  $\mu$ L total volume for the lowest standard often resulted in calibration graphs that curved upward. It is believed this is due to incomplete mixing with the modifier solution. This upward curvature was only seen for arsenic and selenium with standard volumes under 5  $\mu$ L. Pre-mixed standards appear to give better results for these two elements if very low volumes (< 5  $\mu$ L) are used for the low standards. All other elements in this study gave excellent results with auto-mixed standards.

# Lead

The matrix modifier used for the Pb study was 1% phosphoric acid. Calibration standards of 5.0, 12.5, 25.0 and 50.0  $\mu$ g/L Pb were prepared from a master standard of 50  $\mu$ g/L. The auto-mixing capabilities of the GTA-96 PSD were utilized. The graphite furnace method, calibration results and calibration graph are shown in Figure 3. The excellent precision permitted the use of only two replicates, further speeding up the analysis.

# Cadmium

The matrix modifier for the cadmium study was 1.0%  $NH_4H_2PO_4$ . Calibration standards of 0.50, 1.25, 2.50 and 5.00 µg/L Cd were prepared from a master standard of 5.00 µg/L. The auto-mixing capabilities of the sampler were utilized. The graphite furnace method, calibration results and calibration graph are shown in Figure 4.

# Antimony

For antimony, utilization of the alternate resonance line of 231.2 nm and a SBW of 0.5 nm resulted in better stability and less curvature than the primary resonance line of 217.6 nm. The sensitivity was more than adequate to meet the required CRDL. The matrix modifier was 3% NH<sub>4</sub>NO<sub>3</sub>. Calibration standards of 60, 120, 180 and 240 µg/L Sb were auto-mixed from a master standard of 240 µg/L. The graphite furnace method, calibration results and calibration graph are shown in Figure 5.

# **Beryllium**

Beryllium did not require a matrix modifier. Calibration standards of 1.0, 2.0, 5.0 and 10.0  $\mu$ g/L Be were auto-mixed from a master standard of 10  $\mu$ g/L. The graphite furnace method, calibration results and calibration graph are shown in Figure 6.

# Chromium

Chromium required wall atomization. Calibration standards of 20.0, 20.0, 50.0 and 100.0  $\mu$ g/L Cr were auto-mixed from a master standard of 100.0  $\mu$ g/L. A matrix modifier was not required. The graphite furnace method and calibration graph are shown in Figure 7.

# Silver

Silver did not require a matrix modifier. Calibration standards of 20.0, 20.0, 50.0 and 100.0  $\mu$ g/L Ag were auto-mixed from a master standard of 200.0  $\mu$ g/L. To reduce sensitivity, 0.3 L/min inert gas was introduced during the atomization steps. The graphite furnace method and calibration graph are shown in Figure 8.

### Thallium

The matrix modifier chosen for the thallium method was 1000 mg/L Pd plus 2% citric acid. Calibration standards of 10.0, 20.0, 50.0 and 100.0  $\mu$ g/L Tl were auto-mixed from a master standard of 100.0  $\mu$ g/L Tl. The graphite furnace method, calibration results and calibration graph are shown in Figure 9.

The key to successfully using palladium as a matrix modifier is to combine it with a reducing agent. A study was done to compare the performance of mixed palladium modifiers in several environmental samples. These included brackish water and soil digest samples. Platform atomization was used to conduct spike recovery studies. The results of this study are shown in Table 3.

Table 3. Pd Modifier Comparison — Spike Recovery Study

| _                                         | Pd(NO <sub>3</sub> ) <sub>2</sub><br>no reducing<br>agent | Pd(NO <sub>3</sub> ) <sub>2</sub><br>+ H <sub>2</sub><br>acid | PdCl <sub>2</sub><br>+ 2% citric | PdCl <sub>2</sub><br>+ 2%<br>hydroxyl-<br>amine HCL |
|-------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------|-----------------------------------------------------|
| D.I. H <sub>2</sub> 0 1% HNO <sub>3</sub> | 104%                                                      | 98%                                                           | 98%                              | 99%                                                 |
| #9 Brackish H <sub>2</sub> 0              | 17%                                                       | 93%                                                           | 90%                              | 86%                                                 |
| 31247-17                                  | 21%                                                       | 46%                                                           | 105%                             | 53%                                                 |
| 31247-28                                  | 38%                                                       | 81%                                                           | 105%                             | 86%                                                 |
| 31247-32                                  | 16%                                                       | 100%                                                          | 98%                              | 91%                                                 |
| 31247-46                                  | 49%                                                       | 76%                                                           | 102%                             | 35%                                                 |

Commercially available solutions of palladium are typically PdCl<sub>2</sub>. By itself, PdCl<sub>2</sub> is a very poor matrix modifier even for the determination of thallium in simple water samples. PdNO<sub>3</sub> is the preferred form of palladium, however if the sample contains high levels of chlorides, recoveries will be poor. If a reducing agent is added both PdNO<sub>3</sub> and PdCl<sub>2</sub> will result in more consistent recoveries. Any of a variety of reducing agents can be used, including a pre-mixed gas of 5% H<sub>2</sub> in 95% argon, hydroxylamine HCl, ascorbic acid, citric acid, et. al. Hydroxylamine HCl may give poor results if the sample contains very high levels of nitric acid. In this particular study, PdCl<sub>2</sub> plus 2% citric acid gave excellent recoveries for all the samples investigated. Citric acid can be added directly to the palladium solution. There was no problem using the more commonly available PdCl<sub>2</sub> solution.

# Results

For several of the elements, accuracy and long term stability of the furnace methodology were investigated by repeated analysis of check standards and real samples.

### Selenium

Accuracy and stability results for the selenium method are reported in Table 4. A blank, check standard, two digested soil samples (31247-32 and 31247-28) and one water sample (31247-32) were analyzed repeatedly (20 times). The results obtained in this study closely matched the expected or "reported" concentrations. The overall precision of repeated analyses is listed, as well as the average individual precisions of three replicate absorbance readings. All results were obtained versus one direct calibration. Standard Additions was not necessary for accurate results

Table 4. Selenium Results

| Sample    | No. times<br>analyzed | ÷×±σ<br>μg/L | Average<br>RSD% | Reported<br>concentration<br>µg/L | Average<br>individual<br>RSD%<br>(3 replicates) |
|-----------|-----------------------|--------------|-----------------|-----------------------------------|-------------------------------------------------|
| Blank     | 21                    | $0.0\pm0.3$  | -               | 0.0                               | -                                               |
| Check std | 20                    | $24.3\pm0.4$ | 1.6%            | 25.0                              | 1.1%                                            |
| 31247-17  | 20                    | $6.0\pm0.3$  | 5.0%            | 5.6                               | 7.2%                                            |
| 31247-28* | 20                    | 42.3 ± 1.1   | 2.6%            | 428.0                             | 1.5%                                            |
| 31247-32  | 20                    | 1.2 ± 0.3    | 25.0%           | 1.6                               | 46.8%                                           |

\* Sample diluted 1:10

#### Arsenic

A similar study was carried out using the arsenic methodology. The results are reported in Table 5. A blank, check standard, an EPA trace metal standard, three soil digest samples (31247-17, 31247-28, and 31247-46) and three water samples (31247-32, NSHL T-3, and NSHL T-4) were analyzed repeatedly. The concentration results obtained in this study closely matched the 'reported' concentrations. Standard Additional calibration was not necessary as direct calibration provided excellent results.

Table 5. Arsenic Results

| Sample    | No. times<br>analyzed | s×±σ<br>μg/L   | Average<br>RSD% | Reported<br>concentration<br>µg/L | Average<br>individual<br>RSD%<br>(3 replicates) |
|-----------|-----------------------|----------------|-----------------|-----------------------------------|-------------------------------------------------|
| Blank     | 10                    | $0.3\pm0.5$    |                 | 0.0                               | -                                               |
| Check std | 11                    | $19.5 \pm 0.8$ | 4.1%            | 20.0                              | 1.4%                                            |
| EPA TM1   | 10                    | $27.4\pm0.9$   | 3.3%            | $26.7 \pm 3.6$                    | 0.9%                                            |
| 31247-17  | 11                    | $10.1 \pm 0.5$ | 5.0%            | 10.0                              | 2.1%                                            |
| 31247-28  | 12                    | $9.4 \pm 0.6$  | 6.4%            | 9.2                               | 2.9%                                            |
| 31247-32  | 10                    | 49.2 ± 1.3     | 2.6%            | 53.8                              | 0.6%                                            |
| 31247-46  | 10                    | $4 \pm 0.5$    | 6.8%            | 7.0                               | 2.8%                                            |
| NSHL T-3  | 8                     | 104.0 ± 3.0    | 2.9%            | 105.0 ± 22.0                      | 0.6%                                            |
| NSHL T-4  | 8                     | 32.6 ± 1.7     | 5.2             | $30.0 \pm 5.0$                    | 1.6%                                            |

#### Lead

The results obtained from a similar study of the lead methodology are reported in Table 6. A blank, check standard, an EPA trace metal standard and two water samples (NSHL T-3 and NSHI T-4) were analyzed repeatedly. Again, the concentration results from this study closely matched the Reported concentration values. The mean relative standard deviation of repeated analyses and the average individual relative standard deviation are also listed. These results were obtained with direct calibration. Standard Additions calibration was not necessary.

#### Table 6. Lead Results

| Sample    | No. times<br>analyzed | s ×±σ<br>μg/L  | Average<br>RSD% | Reported<br>concentration<br>µg/L | Average<br>individual<br>RSD%<br>(3 replicates) |
|-----------|-----------------------|----------------|-----------------|-----------------------------------|-------------------------------------------------|
| Blank     | 9                     | 1.0 ± 0.3      | -               | 0.0                               | -                                               |
| Check std | 9                     | 19.5 ± 0.8     | 4.1%            | 20.0                              | 1.4%                                            |
| EPA TM1   | 7                     | $40.5\pm0.7$   | 1.7%            | 42.7 ± 15.0                       | 0.8%                                            |
| NSHL T-3  | 7                     | $16.3 \pm 0.4$ | 2.5%            | (14.0 - 20.0)                     | 1.5%                                            |
| NSHL T-4  | 4                     | $24.6\pm0.3$   | 1.2%            | 26.7 ± 8.0                        | 0.9%                                            |
|           |                       |                |                 |                                   |                                                 |

### Cadmium

Accuracy and stability of results for the cadmium method are listed in Table 7. A blank, a check standard, an EPA trace metal standard, and two water samples (NSHL T-3 and NSHL T-4) were analyzed repeatedly. The concentrations of cadmium obtained in this study closely matched the "reported" concentration. The mean relative standard deviation of repeated analysis and the average individual relative standard deviation are listed. Accurate results were obtained without Standard Additions.

Table 7. Cadium Results

| No. times<br>analyzed | ×±σ<br>μg/L                    | Average<br>RSD%                                                          | Reported<br>concentration<br>µg/L                                                              | Average<br>individual<br>RSD%<br>(3 replicates)                                                                                                                               |
|-----------------------|--------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                     | 0.07                           | _                                                                        | 0.0                                                                                            | -                                                                                                                                                                             |
| 5                     | 4.99 ± 0.09                    | 1.7%                                                                     | 5.00                                                                                           | 0.5%                                                                                                                                                                          |
| 13                    | 8.63 ± 0.10                    | 1.2%                                                                     | 9.10 ± 1.0                                                                                     | 0.9%                                                                                                                                                                          |
| 13                    | 4.44 ± 0.04                    | 0.9%                                                                     | $4.98\pm0.8$                                                                                   | 1.0%                                                                                                                                                                          |
| 13                    | 5.05 ± 0.09                    | 1.8%                                                                     | 5.20 ± 1.1                                                                                     | 0.7%                                                                                                                                                                          |
|                       | analyzed<br>1<br>5<br>13<br>13 | analyzed μg/L   1 0.07   5 4.99 ± 0.09   13 8.63 ± 0.10   13 4.44 ± 0.04 | analyzed μg/L RSD%   1 0.07 -   5 4.99 ± 0.09 1.7%   13 8.63 ± 0.10 1.2%   13 4.44 ± 0.04 0.9% | No. times analyzed $\pm \sigma$ Average RSD% concentration $\mu g/L$ 1 0.07 - 0.0   5 4.99 ± 0.09 1.7% 5.00   13 8.63 ± 0.10 1.2% 9.10 ± 1.0   13 4.44 ± 0.04 0.9% 4.98 ± 0.8 |

### Antimony

A similar study was carried out using the antimony methodology. The results are reported in Table 8. A blank, two check standards, and two digested soil samples were analyzed repeatedly. The antimony calibration was established with standard concentrations of  $60-240 \mu g/L$  Sb using the less sensitive 231.2 nm resonance line. Sensitivity was more than adequate to meet contract requirements. If necessary, precisions for samples of less than  $10 \mu g/L$  Sb could be improved by using the more sensitive primary resonance line (217.6nm). "Reported" concentration values were not available for the soil digest samples 31247–17 and 31247–28. Recovery studies were done on these samples. Recoveries were 101% and 99% respectively. This confirmed that there was no interference from the sample matrix.

#### Table 8. Antimony Results

| Sample      | No. times<br>analyzed | ×±σ<br>μg/L   | Average<br>RSD% | Reported<br>concentration<br>µg/L | Average<br>individual<br>RSD%<br>(3 replicates) |
|-------------|-----------------------|---------------|-----------------|-----------------------------------|-------------------------------------------------|
| Blank       | 6                     | $0.0 \pm 0.5$ | _               |                                   | 0.0 -                                           |
| Check std 1 | 6                     | 49.4 ± 1.7    | 3.4%            | 50.0                              | 1.2%                                            |
| Check std 2 | 4                     | $124.0\pm4.0$ | 3.2%            | 125.0                             | 0.8%                                            |
| 31247-17    | 5                     | 8.6 ± 1.3     | 15.1%           | n/a                               | 10.7%                                           |
| 31247-28    | 5                     | 10.0 ± 1.2    | 12.0%           | n/a                               | 5.1                                             |

### Beryllium

A similar study was carried out using the beryllium methodology and the results are listed in Table 9. A blank, check standard, an EPA trace metal standard and three digested soil samples (31247-17, 31246-28 and 31247-46) were analyzed repeatedly. Reported concentration values were not available for the digested soil and water samples. Standard Additions calibration was utilized to determine the accuracy of the direct method. The standard Additions results are reported in Table 9.

#### Table 9. Beryllium Results

| Sample      | No. times<br>analyzed | ×±σ<br>μg/L   | Average<br>RSD% | Reported<br>concentration<br>µg/L | Average<br>individual<br>RSD%<br>(3 replicates) |
|-------------|-----------------------|---------------|-----------------|-----------------------------------|-------------------------------------------------|
| Blank       | 4                     | 0.15 ± 0.0    | 6 —             | 0.0                               | -                                               |
| Check std   | 8                     | $9.9\pm0.4$   | 4.0%            | 10.0                              | 2.8%                                            |
| $EPA TM1^*$ | 13                    | $30.5\pm0.9$  | 2.9%            | 29.0                              | 2.4%                                            |
| 31247-17    | 3                     | $1.3 \pm 0.2$ | 15.4%           | 1.4**                             | 11.2%                                           |
| 31247-28    | 3                     | $1.5 \pm 0.2$ | 8.3%            | 2.7**                             | 5.7%                                            |
| 31247-46    | 3                     | $1.5 \pm 0.2$ | 13.3%           | 1.7**                             | 6.8%                                            |

\* EPA TM1 was diluted 1:4 and all other samples were diluted 1:2 with the PSD-96 to fall within the Be calibration range.

\* By Standard Additions

# Conclusion

The graphite furnace methodology presented in this study was developed following EPA recommendations. Varian SpectrAA-300/400 Zeeman spectrometer systems were utilized. Nine important environmental elements were investigated (As, Se, Cd, Pb, Tl, Sb, Ag, Be, and Cr). Methods used to reduce interferences included matrix modifiers, pyrolitic graphite platforms, peak area absorbance measurements and Zeeman background correction. Difficult, real samples were analyzed repeatedly to demonstrate long term stability and accuracy. The Hot Inject capability reduced analysis time. A typical single analysis cycle was less than two minutes. Time consuming Standard Additions calibration was not necessary for the accurate determination of any of the elements in this study. Excellent results were obtained for all elements using the GFAAS methodology presented.

# For More Information

For more information on our products and services, visit our Web Site www.agilent.com/chem.

| OPERATOR | Cindy Beach      |
|----------|------------------|
| DATE     | 2/10/88          |
| BATCH    | ENSECO-Final Run |

PRD6RAM 11 Se Super Lamp

| INSTRUMENT MODE        | ABSORBANCE         |
|------------------------|--------------------|
| CALIBRATION MODE       | CONCENTRATION      |
| MEASUREMENT MODE       | PEAK AREA          |
| LAMP POSITION          | 4                  |
| LAMP CURRENT (mA)      | 15                 |
| SLIT WIDTH (nm)        | 1.0                |
| SLIT HEIGHT            | NORMAL             |
| WAVELENGTH (nm)        | 196.0              |
| SAMPLE INTRODUCTION    | SAMPLER AUTOMIXING |
| TIME CONSTANT          | 0.05               |
| MEASUREMENT TIME (sec) | 1.0                |
| REPLICATES             | 4                  |
| BACKGROUND CORRECTION  | DN                 |
| MAXIMUM ABSORBANCE     | 1.20               |

|             | F                  | JRNACE PA | RAMETERS         |          |                 |
|-------------|--------------------|-----------|------------------|----------|-----------------|
| STEP<br>ND. | TEMPERATURE<br>(C) | (sec)     | GAS FLDW (L/min) | GAS TYPE | READ<br>COMMAND |
| 1           | 220                | 15.0      | 3.0              | NORMAL   | ND              |
| 2           | 220                | 5.0       | 3.0              | NORMAL   | ND              |
| 3           | 500                | 10.0      | 3.0              | NORMAL   | NO              |
| 4           | 700                | 15.0      | 3.0              | NORMAL   | NO              |
| 5           | 900                | 10.0      | 3.0              | NORMAL   | ND              |
| 6           | 2200               | 0.7       | 0.0              | NORMAL   | YES             |
| 7           | 2200               | 2.7       | 0.0              | NORMAL   | YES             |
| B           | 2400               | 2.0       | 3.0              | NORMAL   | NO              |
| 9           | 40                 | 12.8      | 3.0              | NORMAL   | NO              |

SAMPLER PARAMETERS VOLUMES (fl) SOLUTION BLANK

| BLANK    |   |    | 20 | 8 |
|----------|---|----|----|---|
| STANDARD | 1 | 2  | 18 | 8 |
| STANDARD | 2 | 4  | 16 | 8 |
| STANDARD | 3 | 10 | 10 | 8 |
| STANDARD | 4 | 20 | 0  | 8 |
| SAMPLE   |   | 20 | 0  | 8 |

HODIFIER

RECALIBRATION RATE RESLOPE RATE

| MULTIPLE INJECT NO | HOT INJECT  | YES | PRE INJECT | NO |
|--------------------|-------------|-----|------------|----|
|                    | TEMPERATURE | 135 |            |    |
|                    | INJECT RATE | 10  |            |    |

| SAMPLE   |   | CONC<br>ug/L | %RSD | MEAN<br>ABS | R     | EADINGS |       |       |
|----------|---|--------------|------|-------------|-------|---------|-------|-------|
| BLANK    |   | 0.0          |      | 0.005       | 0.006 | 0.005   | 0.005 | 0.004 |
| STANDARD | 1 | 5.0          | 5.0  | 0.016       | 0.017 | 0.016   | 0.015 | 0.017 |
| STANDARD | 2 | 10.0         | 7.3  | 0.033       | 0.031 | 0.035   | 0.031 | 0.035 |
| STANDARD | 3 | 25.0         | 2.6  | 0.095       | 0.093 | 0.094   | 0.098 | 0.096 |
| STANDARD | 4 | 50.0         | 1.2  | 0,200       | 0.200 | 0.196   | 0.201 | 0.202 |

00

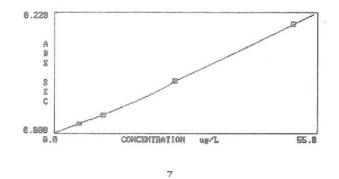



Figure 1. The graphite furnace method, calibration results and calibration graph for selinium.

| UF  | £ | SALOS |
|-----|---|-------|
| DA  | Т | E     |
| HC. | Т | CH    |

Cindy Beach 3/14/88 As final run PROSEAM 9

| As | Digested | Samples |
|----|----------|---------|

| INSTRUMENT MODE        | ABSORBANCE       |
|------------------------|------------------|
| CALIBRATION MODE       | CONCENTRATION    |
| MEASUREMENT MODE       | PEAK AREA        |
| LAMP POSITION          | 4                |
| LAMP CURRENT (mA)      | 8                |
| SLIT WIDTH (nm)        | 0.5              |
| SLIT HEIGHT            | NORMAL           |
| WAVELENGTH (nm)        | 193.7            |
| SAMPLE INTRODUCTION    | SAMPLER PREMIXED |
| TIME CONSTANT          | 0.05             |
| MEASUREMENT TIME (sec) | 2.0              |
| REPLICATES             | 3                |
| BACKGROUND CORRECTION  | ON               |
| MAXIMUM ABSORBANCE     | 0.95             |

| STEP | TEMPERATURE | TIME  | DAS FLOW | GAS TYPE | READ    |
|------|-------------|-------|----------|----------|---------|
| ND.  | (C)         | (sec) | (L/min)  |          | COMMAND |
| 1    | 350         | 20.0  | 3.0      | NORMAL   | NO      |
| 2    | 600         | 15.0  | 3.0      | NORMAL   | NO      |
| 3    | 1100        | 10.0  | 3.0      | NORMAL   | NO      |
| 4    | 1100        | 10.0  | 3.0      | NORMAL   | NO      |
| 5    | 1100        | 1.0   | 0.0      | NORMAL   | NO      |
| 6    | 2400        | 0.7   | 0.0      | NORMAL   | YES     |
| 7    | 2400        | 2.7   | 0.0      | NORMAL   | YES     |
| 8    | 2400        | 2.0   | 3.0      | NORMAL   | NO      |

|          |        |          | LER PA           | RAMETERS |                 |     |        |      |
|----------|--------|----------|------------------|----------|-----------------|-----|--------|------|
|          |        | SOLUTI   | ON               | BLAN     | ĸ               | MO  | DIFIER |      |
| BLANK    |        |          |                  | 20       |                 |     | 8      | <br> |
| STANDARD | 1      | 20       |                  | 0        |                 |     | 8      |      |
| STANDARD | 2      | 20       |                  | 0        |                 |     | 8      |      |
| STANDARD | 3      | 20       |                  | 0        |                 |     | 8      |      |
| STANDARD | 4      | 20       |                  | 0        |                 |     | 8      |      |
| SAMPLE   |        | 20       |                  | 0        |                 |     | 8      | <br> |
|          |        | RECALIBR | ATION I          | RATE     | 0               |     |        |      |
|          |        | RESLOPE  | RATE             |          | 0               |     |        |      |
| MULTIFLE | INJECT | NO       | HDT IN<br>TEMPER |          | YES<br>150<br>7 | PRE | INJECT | ND   |

| 5/vHPLE    | CONC<br>ug/L | %RSD | MEAN<br>ABS | 1      | READINGS |        |
|------------|--------------|------|-------------|--------|----------|--------|
| THE AME    | 0.0          |      | -0,001      | -0.001 | -0.002   | -0.000 |
| FTANDARD 1 | 10.0         | 1.0  | 0.050       | 0.049  | 0.050    | 0.051  |
| STANDARD D | 20.0         | 0.9  | 0.107       | 0.106  | 0.107    | 0.107  |
| STALLAFD S | 50.0         | 1.2  | 0.262       | 0.259  | 0.265    | 0.260  |
| STAPPART A | 100.0        | 0.3  | 0.497       | 0.501  | 0.498    | 0.499  |

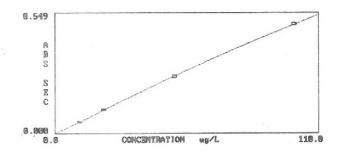



Figure 2. The graphite furnace method, calibration results and calibration graph for arsenic.

| OPERATOR | Cindy Beach             |
|----------|-------------------------|
| DATE     | 4/18 -58                |
| BATCH    | Final Pb run (5-50 ppb) |

p

| FOGRAM | 60 | Fb | EFi | Metho | ds |
|--------|----|----|-----|-------|----|
|--------|----|----|-----|-------|----|

| INSTRUMENT MODE        | ABSORBANCE         |
|------------------------|--------------------|
| CALIBRATION MODE       | CONCENTRATION      |
| MEASUREMENT MODE       | FEAR AREA          |
| LAMP POSITION          | 3                  |
| LAMP CURRENT IMA       | 5                  |
| SLIT WIDTH (nm)        | 0.5                |
| SLIT HEIGHT            | NORMAL             |
| WAVELENGTH (nm)        | 2B3.5              |
| SAMPLE INTRODUCTION    | SAMFLEF AUTOMIXING |
| TIME CONSTANT          | 0.05               |
| MEASUREMENT TIME (sec) | 1.0                |
| REFLICATES             | 2                  |
| BACKGROUND CORRECTION  | 0N                 |
| MAXIMUM ABSORBANCE     | 1.40               |
|                        |                    |
|                        |                    |

| STEP | TEMPERATURE | TIME  | GAS FLOW | GAS TYPE | READ    |
|------|-------------|-------|----------|----------|---------|
| NO.  | (C)         | (sec) | (L/min)  |          | COMMAND |
| 1    | 450         | 10.0  | 3.0      | NORMAL   | NO      |
| 2    | 600         | 15.0  | 3.0      | NORMAL   | NO      |
| 3    | 600         | 20.0  | 2.0      | NORMAL   | NO      |
| 4    | 500         | 1.0   | 0.0      | NORMAL   | NO      |
| 5    | 2200        | 0.8   | 0.0      | NORMAL   | YES     |
| 6    | 2200        | 2.7   | 0.0      | NORMAL   | YES     |
| 7    | 2200        | 2.0   | 3.0      | NORMAL   | NO      |

|            | SAMPLER PARAMETERS<br>VOLUMES (7L) |       |          |  |  |  |  |  |  |  |
|------------|------------------------------------|-------|----------|--|--|--|--|--|--|--|
|            | SOLUTION                           | BLANK | MODIFIER |  |  |  |  |  |  |  |
| BLANK      |                                    | 20    | 3        |  |  |  |  |  |  |  |
| STANDARD 1 | 2                                  | 18    | 3        |  |  |  |  |  |  |  |
| STANDARD 2 | 5                                  | 15    | 3        |  |  |  |  |  |  |  |
| STANDARD 3 | 10                                 | 10    | 3        |  |  |  |  |  |  |  |
| STANDARD 4 | 20                                 | 0     | 3        |  |  |  |  |  |  |  |
| SAMPLE     | 20                                 | 0     | 3        |  |  |  |  |  |  |  |

|          |        | RECALIBI | RATIC | IN FATE | 0   |     |        |
|----------|--------|----------|-------|---------|-----|-----|--------|
|          |        | RESLOPE  | RATE  | -       | 0   |     |        |
| MULTIPLE | INJECT | NO       | нат   | INJECT  | YES | PRE | INJECT |

| TEMPERATURE | 150 |  |
|-------------|-----|--|
| INJECT RATE | 5   |  |

ND

| SAMPLE     | CONC | <b>NRSD</b> | MEAN<br>ABS |        | READINGS |  |
|------------|------|-------------|-------------|--------|----------|--|
| BLANK      | 0.0  |             | -0,001      | -0.002 | -0.001   |  |
| STANDARD 1 | 5.0  | 15.6        | 0.024       | 0.026  | 0.021    |  |
| STANDARD 2 | 12.5 | 2.0         | 0.066       | 0.067  | 0.065    |  |
| STANDARD 3 | 25.0 | 0.9         | 0.132       | 0.131  | 0.133    |  |
| STANDARD 4 | 50.0 | 0.5         | 0.251       | 0.250  | 0.251    |  |
|            |      |             |             |        |          |  |

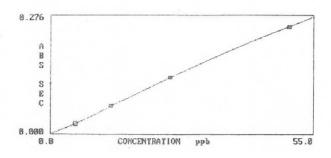



Figure 3. The graphite furnace method, calibration results and calibration graph for lead.

| OPERATOR | Cindy Beach   |
|----------|---------------|
| DATE     | 3/22/88       |
| BATCH    | Cd EPA Method |

PROGRAM 3 Cd EPA Method

| INSTRUMENT MODE        | ABSORBANCE         |
|------------------------|--------------------|
| CALIBRATION MODE       | CONCENTRATION      |
| MEASUREMENT MODE       | PEAK AREA          |
| LAMP POSITION          | 1                  |
| LAMP CURRENT (mA)      | 4                  |
| SLIT WIDTH (nm)        | 0.5                |
| SLIT HEIGHT            | NORMAL             |
| WAVELENGTH (nm)        | 228.8              |
| SAMPLE INTRODUCTION    | SAMFLER AUTOMIXING |
| TIME CONSTANT          | 0.05               |
| MEASUREMENT TIME (sec) | 1.0                |
| REPLICATES             | 2                  |
| BACKGROUND CORRECTION  | DN                 |
| MAXIMUM ABSORBANCE     | 0.70               |
| ELIDNACE DADAMETEDE    |                    |

| STEP<br>ND. | TEMPERATURE<br>(C) | (sec) | GAS FLOW (L/min) | GAS TYPE | READ<br>COMMAND |
|-------------|--------------------|-------|------------------|----------|-----------------|
|             |                    |       |                  |          |                 |
| 1           | 350                | 20.0  | 3.0              | NORMAL   | ND              |
| 3           | 500                | 10.0  | 3.0              | NORMAL   | ND              |
| 4           | 500                | 1.0   | 0.0              | NORMAL   | NO              |
| 5           | 2000               | 0.8   | 0.0              | NORMAL   | YES             |
| 6           | 2000               | 2.0   | 0.0              | NORMAL   | YES             |
| 7           | 2200               | 2.0   | 3.0              | NORMAL   | NO              |

|          |        |          | PLER PI | ARAMETER<br>5 (fL) | S   |     |        |             |
|----------|--------|----------|---------|--------------------|-----|-----|--------|-------------|
|          |        | SOLUT    |         | BLA                | NK  | MOI | DIFIER |             |
| BLANK    |        |          |         | 20                 |     |     | 5      | and the set |
| STANDARD | 1      | 2        |         | 18                 |     |     | 5      |             |
| STANDARD | 2      | 5        |         | 15                 |     |     | 5      |             |
| STANDARD | 3      | 10       |         | 10                 |     |     | 5      |             |
| STANDARD | 4      | 20       |         | 0                  |     |     | 5      |             |
| SAMPLE   |        | 10       |         | 10                 |     |     | 5      |             |
|          |        | RECALIBE | RATION  | RATE               | 0   |     |        |             |
|          |        | RESLOPE  | RATE    |                    | 0   |     |        |             |
| MULTIPLE | INJECT | NO       | HOT IN  | NJECT              | YES | PRE | INJECT | NO          |
|          |        |          | TEMPER  | RATURE             | 150 |     |        |             |
|          |        |          | INJEC'  | RATE               | 7   |     |        |             |

#### VOLUME CORRECTION APPLIED

| TIFLE          | CONC | XRSD | MEAN   | RI     | EADINGS |
|----------------|------|------|--------|--------|---------|
|                | ug/t |      | ABS    |        |         |
| S 625B         | 0.00 |      | 0.009  | 0.008  | 0.010   |
| 27.27.7.77.1   | 0.50 | 12.6 | 0.045  | 0.04B  | 0.041   |
| Electron 2     | 1.25 | 2.1  | 0.121  | 0.119  | 0.123   |
| 5 3 3          | 2.50 | 1.0  | 0.245  | 0.247  | 0.243   |
| Station and an | 5.00 | 2.0  | 0.437* | 0.431# | 0.443#  |

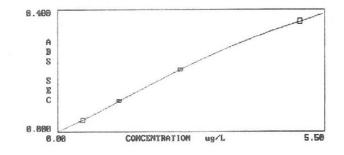



Figure 4. The graphite furnace method, calibration results and calibration graph for cadium.

|      | PROGRAM  | 46    | Sb   | EPA   | Pro  | ject-2nd |        |        |         |
|------|----------|-------|------|-------|------|----------|--------|--------|---------|
|      |          | INST  | RUM  | ENT   | HODE |          | ABSORI | BANCE  |         |
|      |          |       |      |       |      | E        |        |        | DN      |
|      |          |       |      |       |      | )E       |        |        |         |
|      |          | LAMP  |      |       |      |          | 2      |        |         |
|      |          | LAMP  | CU   | REN   | F (n | (Ar      | 10     |        |         |
|      |          | SLIT  | WII  | DTH   | (nm) |          | 0.5    |        |         |
|      |          | SLIT  | HE   | GHT   |      |          | NORMAL |        |         |
|      |          | WAVE  | EN   | STH   | (nm) |          | 231.2  |        |         |
|      |          | SAMPL | E    | INTRO | DUC  | TION     | SAMPLE | R AUTO | MIXING  |
|      |          | TIME  | COM  | ATEN  | TI   |          | 0.10   |        |         |
|      |          | MEASU | JREN | 1ENT  | TIM  | E (sec)  | 1.0    |        |         |
|      |          | REPL  |      |       |      |          | 3      |        |         |
|      |          | BACK  | SROL | JND D | ORR  | ECTION   | DN     |        |         |
|      |          | MAXIN | 1UM  | ABS   | RBA  | NCE      | 1.40   |        |         |
|      |          | F     | URN  | ACE   | PAR  | AMETERS  |        |        |         |
| STEP | TEMPERAT | URE   |      | TIME  |      | GAS FLOW | GA GA  | S TYPE | READ    |
| ND.  | (C)      |       |      |       |      | (L/min)  |        |        | COMMAND |
| 1    | 200      |       |      | 25.0  | ,    | 3.0      | NC     | RMAL   | ND      |
| 2    | 350      |       |      | 20.0  |      | 3.0      | NO     | RMAL   | ND      |
| 3    | 900      |       |      |       |      | 3.0      |        |        |         |
| 4    | 900      |       |      | 10.0  | 1    | 3.0      |        | RMAL   |         |
| 5    | 900      |       |      | 1.0   |      | 0.0      |        |        |         |
| 5    | 2100     |       |      | 0.8   |      | 0.0      | NO     |        |         |
| 7    |          |       |      | 2.0   |      | 0.0      |        | RMAL   | YES     |
| 3    | 2400     |       |      | 2.0   |      | 3.0      |        |        |         |
| 2    | 40       |       |      | 12.3  |      | 3.0      | 0.000  | RMAL   | NO      |

Cindy Beach 4/28/88 Antimony

OPERATOR DATE BATCH

|          |        |         |         | ARAMETE | RS                |     |     |        |     |
|----------|--------|---------|---------|---------|-------------------|-----|-----|--------|-----|
|          |        |         | VOLUME! | 5 (fL)  |                   |     |     |        |     |
|          |        | SOLUT   | ION     | BL      | ANK               |     | MO  | DIFIER |     |
| BLANK    |        |         |         | 2       | 20                |     |     | 8      |     |
| STANDARD | 1      | 5       |         |         | 5                 |     |     | 8      |     |
| STANDARD | 2      | 10      |         |         | ō                 |     |     | 8      |     |
| STANDARD | 3      | 15      |         |         |                   |     |     | 8      |     |
| STANDARD | 4      | 20      |         | 0       |                   |     |     | 8      |     |
| BAMPLE   |        | 20      |         |         |                   |     |     | 8      |     |
|          |        |         |         |         | the first star at |     |     |        |     |
|          |        | RECALIB | RATION  | RATE    |                   | 0   |     |        |     |
|          |        | RESLOPE | RATE    |         |                   | 0   |     |        |     |
| ULTIPLE  | INJECT | ND      | HOT 1N  | JECT    |                   | YES | FRE | INJECT | NO  |
|          |        |         | TEMPER  | ATURE   |                   | 145 |     |        | 140 |
|          |        |         | INJECT  | BATE    |                   | 7   |     |        |     |

| SAMPLE                                                        | CONC                                   | ZRSD                     | MEAN<br>ABS                                |                                           | READINGS                                   |                                            |
|---------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| BLANK<br>STANDARD 1<br>STANDARD 2<br>STANDARD 3<br>STANDARD 4 | 0.0<br>40.0<br>120.0<br>180.0<br>240.0 | 1.9<br>1.4<br>0.4<br>1.2 | -0.001<br>0.275<br>0.551<br>0.805<br>1.014 | 0.002<br>0.270<br>0.549<br>0.807<br>1.003 | -0.003<br>0.276<br>0.560<br>0.802<br>1.028 | -0.003<br>0.280<br>0.545<br>0.807<br>1.013 |

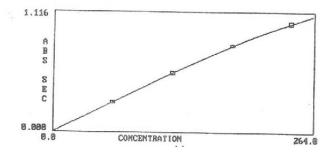



Figure 5. The graphite furnace method, calibration results and calibration graph for antimony.

|     | 240       |          | 30.0    | 3.0      | NORM     | AL     | NO      |
|-----|-----------|----------|---------|----------|----------|--------|---------|
| α.  | (C)       |          | (sec)   | (L/min)  |          |        | COMMAND |
| TEP | TEMPERAT  | TURE     |         | GAS FLD  | GA5      | TYPE   | READ    |
|     |           | FUR      | NACE PA | RAMETERS |          |        |         |
|     |           | THE THOM | hesone  |          |          |        |         |
|     |           | MAXIMUM  |         |          | 0.70     |        |         |
|     |           |          |         | RECTION  | DN       |        |         |
|     |           | REPLICA  |         | ME (sec) | 2        |        |         |
|     |           | TIME CO  |         | ME (ana) | 0.05     |        |         |
|     |           |          |         | CTION    |          | AUTOMI | XING    |
|     |           | WAVELEN  |         |          | 234.9    |        |         |
|     |           | SLIT HE  | IGHT    |          | NORMAL   |        |         |
|     |           | SLIT WI  | DTH (nm | )        | 1.0      |        |         |
|     |           | LAMP CU  | RRENT ( | mA)      | 5        |        |         |
|     |           | LAMP PO  | SITION  |          | 1        |        |         |
|     |           | MEASURE  | MENT MO | DE       | PEAK ARE | EA     |         |
|     |           |          | TION MO |          | CONCENTR | RATION |         |
|     |           | INSTRUM  | ENT MOD | E        | ABSORBAN | NCE    |         |
|     | 1 KUOKHII | 00 DE    | 2       |          |          |        |         |
|     | PROSRAM   | BT Be    | FPA WO  | rk       |          |        |         |
|     | BATCH     | E:e      | •       |          |          |        |         |
|     | DATE      | 57       | 17/88   |          |          |        |         |
|     | DEFRATOR  | 6 C:     | ndy Ree | ch       |          |        |         |

|             | F1                 | URNALE PH | KHPIC LENS       |          |                 |
|-------------|--------------------|-----------|------------------|----------|-----------------|
| STEP<br>NO. | TEMPERATURE<br>(C) | (sec)     | GAS FLOW (L/min) | GAS TYPE | READ<br>COMMAND |
| 1           | 240                | 30.0      | 3.0              | NORMAL   | NO              |
| 2           | 1200               | 15.0      | 3.0              | NORMAL   | NO              |
| 3           | 1200               | 10.0      | 3.0              | NORMAL   | ND              |
| 4           | 1200               | 1.0 .     | 0.0              | NORMAL   | NO              |
| 5           | 2400               | 0.6       | 0.0              | NORMAL   | YES             |
| 6           | 2400               | 4.0       | 0.0              | NORMAL   | YES             |
| 7           | 2600               | 2.0       | 3.0              | NORMAL   | NO              |

SAMFLER PARAMETERS

|            | SOLUTION | BLANK | MODIFIER |
|------------|----------|-------|----------|
| BLANK      |          | 20    |          |
| STANDARD 1 | 2        | 18    |          |
| STANDARD 2 | 4        | 16    |          |
| STANDARD 3 | 10       | 10    |          |
| STANDARD 4 | 20       | 0     |          |
| SAMPLE     | 10       | 10    |          |

RECALIBRATION RATE 0 RESLOPE RATE 0

| MULTIPLE | INJECT | NO | HOT INJECT | YES   | PRE | INJECT | NO |
|----------|--------|----|------------|-------|-----|--------|----|
|          |        |    | TEMPERATUR | E 135 |     |        |    |
|          |        |    | INJECT RAT | E 7   |     |        |    |
|          |        |    |            |       |     |        |    |

| 5-4151.55    |   | CONC   | 115-521 | MEDIC | F     | 1-11:05 |
|--------------|---|--------|---------|-------|-------|---------|
|              |   | 09 ° - |         | AHS   |       |         |
| 5.0.04       |   | 0.0    |         | 0.007 | 0.00B | 0.006   |
| FTA1.74FT    |   | 1.0    | 4.3     | 0.069 | 0.067 | 0.071   |
| 21.05034485° | 1 | 2.0    | 1.1     | 0.140 | 0.139 | 0.141   |
| STANDARE     | 2 | 5.0    | 1.6     | 0.346 | 0.350 | 0.342   |
| STONDARD     | 4 | 10.0   | 0.9     | 0.664 | 0.660 | 0.668   |
|              |   |        |         |       |       |         |

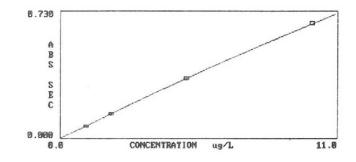



Figure 6. The graphite furnace method, calibration results and calibration graph for beryllium.

|                      | OPERATO                          | R     | Cind  | y E      | each               |                          |               |           |     |      |       |    |
|----------------------|----------------------------------|-------|-------|----------|--------------------|--------------------------|---------------|-----------|-----|------|-------|----|
|                      | DATE<br>BATCH                    |       | 12/2  | 1/8      | 37                 |                          |               |           |     |      |       |    |
|                      | BATCH                            |       | CHRC  | MIL      | IM                 |                          |               |           |     |      |       |    |
|                      | PROGRAM                          | 26    | Cr E  | PA       | Proj               | ect                      |               |           |     |      |       |    |
|                      |                                  | INST  |       |          |                    |                          | ABS           |           |     |      |       |    |
|                      |                                  | MEAS  |       |          |                    |                          | PEA           |           |     | DN   |       |    |
|                      |                                  | LAMP  |       |          |                    |                          | 6             | r. Hrit   | EH  |      |       |    |
|                      |                                  | LAMP  |       |          |                    |                          | 7             |           |     |      |       |    |
|                      |                                  | SLIT  |       |          |                    |                          | 0.2           |           |     |      |       |    |
|                      |                                  | SIIT  | HEIG  | HT       |                    |                          | REDI          | UCED      |     |      |       |    |
|                      |                                  | WAVEL | ENGT  | H (      | nm)                |                          | 357           | .9        |     |      |       |    |
|                      |                                  | SAMPL | E IN  | TRO      | DUCT               | ION                      | SAM           | PLER      | AUT | OMIX | ING   |    |
|                      |                                  | TIME  | CONS  | TAN      | Т                  |                          | 0.05          | 5         |     |      |       |    |
|                      |                                  | MEASL | JREME | NT       | TIME               | (sec)                    | 1.0           |           |     |      |       |    |
|                      |                                  | REPLI |       |          |                    |                          | 2             |           |     |      |       |    |
|                      |                                  |       |       |          |                    |                          | DN            |           |     |      |       |    |
|                      |                                  | MAXIM | 1UM A | BSO      | RBAN               | CE                       | 2,00          | 0         |     |      |       |    |
|                      |                                  | F     | URNA  | CE       | PARA               | METERS                   |               |           |     |      |       |    |
| STEP                 | TEMPERAT                         | TURE  | Т     | IME      | 1                  | SAS FLO                  | W             | GAS       | TYP | E    | READ  |    |
| NO.                  | (C)                              |       |       |          | )                  | (L/min)                  |               |           |     |      | COMMA | ND |
| 1                    | 85                               |       | 5     | .0       |                    | 3.0<br>3.0               |               | NOR       | MAL |      | ND    |    |
| 2                    | 95                               |       |       | 0 0      | i.                 | 3.0                      |               | NORM      | MAL |      | NO    |    |
| 3                    | 120                              |       | 1     | 0.0      | í                  | 3.0                      |               | NOR       | TAL |      | NO    |    |
| 4                    | 1000                             |       | 1     | 0.0      |                    | 3.0                      |               | NORM      | AL  |      | NO    |    |
| 5                    | 1000                             |       | 1     | 0.0      |                    | 3.0<br>3.0<br>3.0<br>0.0 |               |           | TAL |      | NO    |    |
| 6                    | 1000                             |       | 1     | .0       |                    | 0.0                      |               | NORM      | TAL |      | NO    |    |
| 7                    | 2600                             |       | 0     | . 8      |                    | 0.0                      |               | NORM      | TAL |      |       |    |
| 8                    | 2600                             |       | 2     | . 0      |                    | 0.0                      |               | NORM      | 101 |      | YES   |    |
| 9                    | 2600                             |       | 2     | .0       |                    | 3.0                      |               | NORM      |     |      | NO    |    |
|                      |                                  |       | COMP. |          |                    | METERS                   |               |           |     |      |       |    |
|                      |                                  |       |       |          |                    | L)                       |               |           |     |      |       |    |
|                      |                                  |       |       |          |                    | BLANK                    |               |           | MOI | DIFI | ER    |    |
|                      |                                  |       |       |          |                    |                          |               |           |     |      |       |    |
| BLANK                |                                  |       |       |          |                    | 20                       |               |           |     |      |       |    |
| STANDARD             |                                  |       | 2     |          |                    | 18                       |               |           |     |      |       |    |
| STANDARD<br>STANDARD |                                  |       | 4     |          |                    | 16                       |               |           |     |      |       |    |
| STANDARD             |                                  |       | 20    |          |                    | 0                        |               |           |     |      |       |    |
| SAMPLE               | 4                                |       | 20    |          |                    | 0                        |               |           |     |      |       |    |
|                      | and and any set was built and an |       |       |          | 100 Bar 100 and 10 |                          |               |           |     |      |       |    |
|                      |                                  | RECAL | TRRA  | T 10     |                    | E                        | 0             |           |     |      |       |    |
|                      |                                  | RESLO |       |          |                    |                          | õ             |           |     |      |       |    |
| MULTIPLE             | INJECT                           | ND    | н     | т        | INJEC              | ст                       | NO            |           | PRE | INJ  | ECT   |    |
|                      |                                  |       |       |          |                    |                          |               |           |     |      |       |    |
|                      | a 270                            | C R   | ROGRA | N 2<br>E | 6                  | Cr EPI<br>REPLIC         | A Pro,<br>ATE | ject<br>1 |     |      |       |    |

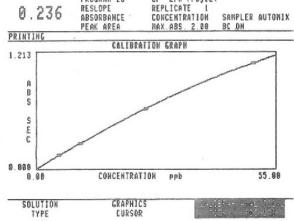



Figure 7. The graphite furnace method, calibration results and calibration graph for chromium.

NO

|      | INSTR       | UMENT MOD | E        | ABSORBA | NCE    |         |
|------|-------------|-----------|----------|---------|--------|---------|
|      |             | RATION MO |          | CONCENT |        |         |
|      |             |           | DE       | PEAK AR | EA     |         |
|      |             | POSITION  |          | 8       |        |         |
|      |             | CURRENT ( |          | 4       |        |         |
|      |             | WIDTH (nm |          | 0.5     |        |         |
|      | SLIT        | HEIGHT    |          | NDRMAL  |        |         |
|      | WAVEL       | ENGTH (nm | )        | 328.1   |        |         |
|      | SAMPL       | E INTRODU | CTION    | SAMPLER | AUTOMI | XING    |
|      |             |           |          |         |        |         |
|      | MEASL       | REMENT TI | ME (sec) | 1.0     |        |         |
|      | REPLI       | CATES     |          | 2       |        |         |
|      | BACKE       | ROUND COR | RECTION  | ON      |        |         |
|      | MAXIM       | UM ABSORB | ANCE     | 1.30    |        |         |
|      | F           | URNACE PA | RAMETERS |         |        |         |
| STEP | TEMPERATURE | TIME      | GAS FLOW | GAS     | TYPE   | READ    |
| ND.  | (C)         | (sec)     | (L/min)  |         |        | COMMAND |
| 1    | 140         |           |          |         | MAL    | ND      |
| 2    | 220         | 50.0      | 3.0      | NDRI    | MAL    | ND      |
| 3    | 600         | 10.0      | 3.0      | NOR     | MAL    | ND      |
| 4    | 600         | 20.0      | 3.0      | NOR     | AL     | ND      |
| 5    | 600         | 1.0       | 0.3      | NORI    | MAL    | ND      |
|      |             |           | 0.3      |         | MAL    | YEB     |
| 7    | 2300        | 2.0       | 0.3      | NDRI    | MAL    | YES     |
|      |             |           |          | +100 mm |        | 110     |
| 8    | 2300        | 2.0       | 3.0      |         | TAL    | NU      |

Cindy Beach 12/30/87 SILVER

Ag EPA PROJECT

OPERATOR DATE BATCH

PROGRAM 20

|         | DADAMETERS |
|---------|------------|
| SAMPLER | PARAMETERS |
| VOLUN   | IES (ut)   |

|          |        | SOLUTI   | DN   | 1       | BLAN | c  | MO  | DIFIER |    |
|----------|--------|----------|------|---------|------|----|-----|--------|----|
| BLANK    |        |          |      |         | 20   |    |     |        |    |
| STANDARD | 1      | 2        |      |         | 18   |    |     |        |    |
| STANDARD | 2      | 4        |      |         | 16   |    |     |        |    |
| STANDARD | 3      | 10       |      |         | 10   |    |     |        |    |
| STANDARD | 4      | 20       |      |         | 0    |    |     |        |    |
| SAMPLE   |        | 20       |      |         | 0    |    |     |        |    |
|          |        |          |      |         |      |    |     |        |    |
|          |        | RECALIBR | ATIO | IN RATE |      | 10 |     |        |    |
|          |        | RESLOPE  | RATE |         |      | 0  |     |        |    |
| MULTIPLE | INJECT | NO       | нот  | INJECT  |      | NO | PRE | INJECT | NO |
|          |        |          |      |         |      |    |     |        |    |

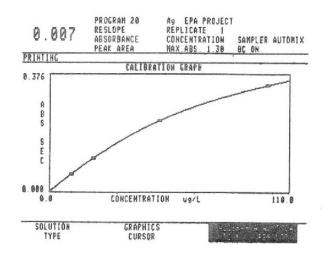



Figure 8. The graphite furnace method, calibration results and calibration graph for silver.

| DPERATOR | Cindy Beach        |
|----------|--------------------|
| DATE     | 5/9/88             |
| BATCH    | Final thallium run |
| Drifbit  |                    |

| PROGRAM 62 T1 EPA method | 5 - | Pd |
|--------------------------|-----|----|
|--------------------------|-----|----|

| INSTRUMENT MODE        | ABSORBANCE         |  |  |  |  |
|------------------------|--------------------|--|--|--|--|
| CALIBRATION MODE       | CONCENTRATION      |  |  |  |  |
| MEASUREMENT MODE       | PEAK AREA          |  |  |  |  |
| LAMP POSITION          | 2                  |  |  |  |  |
| LAMP CURRENT (MA)      | 10                 |  |  |  |  |
| SLIT WIDTH (nm)        | 0.5                |  |  |  |  |
| SLIT HEIGHT            | NDRMAL             |  |  |  |  |
| WAVELENGTH (nm)        | 276.8              |  |  |  |  |
| SAMPLE INTRODUCTION    | SAMPLER AUTOMIXING |  |  |  |  |
| TIME CONSTANT          | 0.05               |  |  |  |  |
| MEASUREMENT TIME (sec) | 1.0                |  |  |  |  |
| REPLICATES             | 2                  |  |  |  |  |
| BACKGROUND CORRECTION  | ON                 |  |  |  |  |
| MAXIMUM ABSORBANCE     | 0.55               |  |  |  |  |
|                        |                    |  |  |  |  |
| FURNACE PARAMETERS     |                    |  |  |  |  |

| STEP | TEMPERATURE | TIME  | GAS FLOW | GAS TYPE | READ    |  |
|------|-------------|-------|----------|----------|---------|--|
| NO.  | (□)         | (sec) | (L/min)  |          | COMMAND |  |
| 1    | 250         | 20.0  | 3.0      | NORMAL   | ND      |  |
| 2    | 1000        | 20.0  | 3.0      | NORMAL   | NO      |  |
| 3    | 1000        | 10.0  | 3.0      | NORMAL   | NO      |  |
| 4    | 1000        | 1.0   | 0.0      | NORMAL   | ND      |  |
| 5    | 2400        | 0.7   | 0.0      | NORMAL   | YES     |  |
| 6    | 2400        | 2.0   | 0.0      | NORMAL   | YES     |  |
| 7    | 2400        | 2.0   | 3.0      | NORMAL   | ND      |  |
| 8    | 40          | 11.8  | 3.0      | NORMAL   | ND      |  |

|          |        |         |        | ARAMETER | s     |     |        |    |
|----------|--------|---------|--------|----------|-------|-----|--------|----|
|          |        | SOLUT   | IDN    | BLA      | ANK . | MO  | DIFIER |    |
| BLANK    |        |         |        | 20       | )     |     | 8      |    |
| STANDARD | 1      | 2       |        | 15       | 18    |     | 8      |    |
| STANDARD | 2      | 4       |        | 16       |       |     | 8      |    |
| STANDARD | 3      | 10      |        | 10       | 2     |     | 8      |    |
| STANDARD | 4      | 20      |        | 0        |       |     | 8      |    |
| SAMPLE   |        | 10      |        | 10       |       |     | 8      |    |
|          |        | RECALIE | RATION | RATE     | 0     |     |        |    |
|          |        | RESLOPE | RATE   |          | Q     |     |        |    |
| MULTIPLE | INJECT | ND      | нот і  | NJECT    | YES   | PRE | INJECT | NO |
|          |        |         | TEMPE  | RATURE   | 145   |     |        |    |
|          |        |         | INJEC  | T RATE   | 7     |     |        |    |

| SAMPLE CO |   | CONC  | %RSD | MEAN  | ,     | READINGS |  |
|-----------|---|-------|------|-------|-------|----------|--|
| BLANK     |   | 0.0   |      | 0.006 | 0.006 | 0.005    |  |
| STANDARD  | 1 | 10.0  | 6.1  | 0.032 | 0.033 | 0.030    |  |
| STANDARD  | 2 | 20.0  | 0.5  | 0.060 | 0.060 | 0.059    |  |
| STANDARD  | 3 | 50.0  | 0.6  | 0.137 | 0.136 | 0.138    |  |
| STANDARD  | 4 | 100.0 | 0.4  | 0.240 | 0.239 | 0.241    |  |

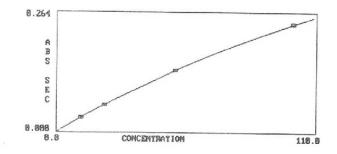



Figure 9. The graphite furnace method, calibration results and calibration graph for thallium.

# www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

 $\ensuremath{\mathbb{C}}$  Agilent Technologies, Inc., 1989 Printed in the USA November 1, 2010 AA090

