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User Benefits

@ The mineral structure of sintered ore can be investigated by quantitative mapping of Al, Mg, Si, Ca, and Fe.
@ This technique is useful in research on the composition of the calcium ferrite phase due to differences in the reduction reaction

depending on the furnace temperature.

@ Phase analysis by quantitative mapping of O and Fe is useful in research on the species of iron oxides.

H Introduction

Reduction of carbon dioxide (CO,) emissions is being promoted
with the aim of achieving carbon neutrality in 2050. In the
hydrogen reduction ironmaking process, CO, emissions are
decreased by reducing iron ore by using hydrogen (H,) in place of
coke (C) to form water (H,0). In Japan, research on a hydrogen
reduction technology using hydrogen in the blast furnace
(COURSES50) is now underway, including study of reduction of the
blast furnace heat requirement and optimization of the raw
material reaction conditions, as well as circulating use of gas with
a regenerated reduction capacity, by promoting hydrogen
reduction, which is a smaller endothermic reaction than direct
reduction by coke. The target of the COURSE50 project is a CO,
reduction of 10 % or more, and development of Super COURSE50
has also begun with the aim of injecting a larger amount of
hydrogen into the blast furnace.

This article introduces an example of analysis of sintered iron
ore after hydrogen reduction, in which an EPMA™ (EPMA-
8050G) electron probe microanalyzer was used.
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Fig. 2 Optical Microscope Images of Sintered Ore after Reduction
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One issue when attempting to expand hydrogen reduction by the
blast furnace process is maintaining a high temperature in the
furnace. Because the reduction reaction using hydrogen is an
endothermic reaction that absorbs heat, the temperature
distribution in the blast furnace changes, and low temperature
reduction powdering of the burden materials becomes
remarkable due to expansion of the low temperature region.
Heating is necessary to suppress this powdering, which results in
an increase in coke use.

Fig. 1 shows the external appearance of sintered ore heated to (a)
600°C and (b) 1000°C using an experimental apparatus
simulating the conditions in a blast furnace.

Fig. 2 shows EPMA optical microscope images (OM-images) of the
sintered ore heated to 600 °C and 1000 °C.

The elemental distribution images in Fig.3 and Fig.4 are the
results of a mapping analysis of the red regions in the OM-images,
in which each element was converted to the wt% concentration
of the simple oxide (in the case of Fe, Fe,0;). (See Related
Application News 1.)

Fig. 3 is the sintered ore that was reduced to the low temperature
of 600 °C under a high-hydrogen blast furnace condition. Since
the reduction reaction was incomplete, the region of high
contrast in the COMPO image is iron oxide. It can be understood
that calcium oxide (CaO), which is the basic component of
calcium ferrite, shows a correlation with silica (SiO,), while the
basic component magnesium oxide (MgO) shows an inverse
relationship with SiO,. Furthermore, iron oxide decreases as the
alumina (Al,05) in the calcium ferrite increases.

Fig.4 is the sintered ore reduced to the high temperature of
1000 °C under the high-hydrogen blast furnace condition. Here,
the calcium ferrite around the rhomboidalized secondary
hematite with a melt-type microstructure has decomposed and
formed calciowustite (FeO-Ca0O), which has a high concentration
of Fe, and slag (or olivine). This indicates that the calcium ferrite
was reduced. In addition, the formation of metallic iron (Fe) in
grains of iron oxide can be observed. From this, it is clear that
reduction of the iron oxide has progressed.
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Fig. 3 Mapping of Sintered Ore after 600 °C Reduction
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Fig. 4 Mapping of Sintered Ore after 1000 “C Reduction
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Fig. 5 Mapping of O and Fe of Sintered Ore after Reduction
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Fig. 6 Phase Analysis of Sintered Ore after Reduction
B Phase Analysis of Sintered Ore after H Conclusion

Hydrogen Reduction

In order to identify differences in the oxidation valence of the
oxides, the element distribution images in Fig.5 show oxygen
(O) and iron (Fe) by the weight concentrations of the simple

elements.

Fig.6 (a) and (c) are Fe-O scatter diagrams showing the
positions of compounds by the theoretical concentration of iron

oxide. In Fig.6 (a), the symbols O and
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(d) 1000 °C: Phase Diagram

In this experiment, it was possible to identify the species of iron

oxides and calcium ferrite by a quantitative mapping analysis
and phase analysis of sintered ore after hydrogen reduction, in
which the EPMA-8050G was used, thus demonstrating that this
technique can be used in structural analyses of sintered ore and

research and development related to ore reduction. This

indicate hematite

(Fe,0;) and magnetite (Fe;0,), respectively, and in Fig.6 (c),
clusters of dots can be seen in the regions showing X wustite <Acknowledgement>

(FeO) and iron (Fe) compounds. Fig.6 (b) and (d) are phases

diagrams in which filters were set by the Fe-O scatter diagrams Murakami of the Tohoku

(see Related Application News 1). In the phase diagrams, purple
regions are hematite, red regions are magnetite, green is
wustite, brown is iron, yellow and blue regions are calcium
ferrite, and yellow-green regions are slag. Although the sintered
ore contains hematite and magnetite before reduction, it can be
understood that the species of iron oxides formed by the

<Related Applications>

technique is also expected to be used in research and
development preconditioned on the use of low-grade iron ores.
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