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Abstract
As the consumer interest and market for plant-based meat alternatives grows, 
understanding the nutritional differences between alternative and traditional 
meats is essential. This application note describes an untargeted GC/MS‑based 
metabolomics approach to comparing the chemical profiles of a popular 
plant‑based meat alternative and grass-fed ground beef that uses an Agilent 7890 
gas chromatograph (GC) system coupled to an Agilent 5977 GC/MSD. Samples 
were derivatized to simplify chromatography and render polar metabolites more 
volatile for GC/MS analysis. Statistical and multivariate analysis of the acquired and 
processed GC/MS data revealed that that 90% of the annotated compounds differed 
between the plant-based alternative meat and grass-fed ground beef samples. The 
ground beef and plant-based products each contained several compounds that were 
found in much smaller quantities, or not at all, in the other product. These results 
indicate differences in organic composition even though the nutritional labels on the 
back of the products were similar.

Heat maps, PCA score plots, VIP plots, and clustering of compounds into metabolite 
classes provided further insights into the differences between the types of meat 
products. The biological significance of the comparative data was studied using 
online databases and pathway analysis tools. 

Comparing the Chemical Profiles of 
Plant-Based and Traditional Meats 
Using GC/MS-Based Metabolomics
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Introduction
Meeting the dietary requirements of 
a growing global population while 
addressing the health concerns and 
sustainability issues associated with 
the consumption of meat has increased 
consumer and scientific interest 
in plant-based alternatives. As the 
popularity of these alternatives grows, it 
is important to understand whether they 
are nutritionally adequate substitutes 
for traditional meats, and if they 
provide lesser, equal, greater, or even 
complementary nutritional value.

A nutritional facts panel (NFP) is required 
on packaged foods in many countries; 
it is intended to communicate a food’s 
nutritional value by listing factors such 
as calorie count, and amounts of sugar, 
fat, vitamins, and minerals. The NFPs of 
commercially available plant‑based meat 
alternatives and ground beef products 
are nearly identical.1 However, studies 
have shown that foods are complex 
and contain a wide variety of nutrients 
not listed on NFPs including phenols, 
antioxidants, peptides, amino acids, fatty 
acids, and biogenic amines that play a 
role in health.2 

Discovery metabolomics—also known 
as untargeted metabolomics—using 
hyphenated mass spectrometry (MS) 
techniques is an approach to measuring 
the large numbers of nutrients and 
other compounds present in food 
matrices. Combined with an appropriate 
sample preparation method, gas 
chromatography/mass spectrometry 
(GC/MS) in particular provides a 
robust solution for in-depth profiling of 
complex samples. Various nutrients—
including amino acids, phenols, 
vitamins, unsaturated fatty acids, and 
dipeptides with potentially important 
physiological, anti-inflammatory, and 
immunomodulatory roles—can be 
analyzed using GC/MS. After GC/MS 
analysis, the data are processed to 
determine the differences between 
sample sets. Compounds of interest are 
identified using tools such as spectral 
libraries and chemical databases.

This application note describes the 
use of a 7890 GC system coupled to a 
5977 GC/MSD for in-depth determination 
of the chemical differences between 
grass-fed ground beef and a popular 
plant-based meat alternative. Compound 
identification was facilitated using a 
custom library built on the Agilent Fiehn 
GC/MS Metabolomics RTL Library. 

The complete workflow, including 
sample preparation, GC/MS, and data 
analysis methods, was developed and 
described by Van Vliet, et al. in their 
report “A metabolomics comparison 
of plant-based meat and grass‑fed 
meat indicates large nutritional 
differences despite comparable 
Nutrition Facts panels.”3

Experimental
An overview of the experimental 
workflow is provided in Figure 1.

Sample preparation and derivatization
Eighteen 113 g (4 oz) samples each 
of commercially available packaged 
plant-based meat alternative (PB) 
and grass‑fed ground beef (GB) were 
analyzed. As presented by Van Vliet, 
et al., patties were cooked in a nonstick 
skillet to 71 °C and one‑gram microcore 
samples were taken, immediately 
frozen in liquid nitrogen, and stored at 
−80 °C until analysis. The microcores 
were powdered under liquid N2 
and homogenized in 50% aqueous 
acetonitrile containing 0.3% formic acid. 
Sample homogenates (100 μL) were 
then transferred into 1.5 mL autosampler 
vials. The proteins in the homogenates 
were then crash precipitated with 

Figure 1. Overview of GC/MS-based metabolomics workflow used to compare the chemical profiles of plant-based and traditional meats. 
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750 μL of dry methanol and centrifuged 
for 5 minutes. The crash solvent was 
spiked with D27-deuterated myristic acid 
(D27-C14:0) as an internal standard for 
retention time locking. 

For derivatization, the supernatant 
(700 μL) of each homogenate was 
transferred to fresh glass vials and dried 
with toluene as an azeotropic drying 
agent. Methoxyamine hydrochloride 
(25 μL) was then added to each sample, 
followed by sample incubation at 50 °C 
for 30 minutes for methoximation of 
certain reactive carbonyl groups. In 
particular, methoxylation of sugars 
reduces the number of isomers present, 
simplifying subsequent data analysis. 
Compounds were made volatile for 
GC/MS analysis by replacement of easily 
exchangeable protons with trimethylsilyl 
(TMS) groups using N-methyl-N-
(trimethylsilyl) trifluoroacetamide 
(MSTFA; 75 μL per sample) at 50 °C for 
30 minutes.

GC/MS instrumentation and analysis
GG/MS analysis was carried out using a 
7890 GC coupled with a 5977 GC/MSD. 
Injections were made using an Agilent 
7693A Automatic Liquid Sampler (ALS) 
with an Agilent 7683B GC Injector. 
The 7890 GC was equipped with an 
Agilent Multimode Inlet (MMI). Two 
wall‑coated open‑tubular (WCOT) Agilent 
J&W DB‑5ms Ultra Inert GC columns 
(15 m × 25 mm, with 0.25-μm luminal 
film, part number 122-5512 UI) were 
connected in series by a purged Ultimate 
union (PUU). The luminal film is a 
nonpolar, thermally-stable, phenyl-arylene 
polymer similar in performance to 
traditional 5%-phenyl-methylpolysiloxane 
films. The MMI in combination 
with a midcolumn PUU enabled hot 
backflushing of the upstream half of the 
column at the end of each run to reduce 
fouling of the GC/MS instrumentation 
with heavy contaminants and carry over 
between injections. 

The workflow used a modified version 
of the Fiehn method4, a dedicated 
GC/MS analysis method for use with 
the Fiehn GC/MS Metabolomics RTL 
Library. Instead of a precolumn, the 
method used a heat ramp in the MMI 
to retain nonvolatile compounds in the 
inlet. Retention indexing with the same 
nominal column dimensions makes the 
modification possible. Prior to each daily 
run (two total), the starting inlet pressure 
was empirically adjusted so the retention 
time of the TMS-D27-C14:0 standard was 
16.727 minutes. Following distillation in 
the MMI, the GC oven was ramped from 
60 to 325 °C at 10 °C/min. Using these 
parameters, the derivatized compounds 
elute from the column at known times 
within specific tolerance of plus or minus 
1 minute. 

The 5977 MSD was equipped with an 
Agilent Extractor EI Source for enhanced 
response for active compounds and late 
eluters. The instrument was operated 
in electron ionization (EI) mode with a 
scan range of 50 to 600 m/z. Data were 
acquired using Agilent MassHunter 
software. The GC and MS parameters 
are provided in Table 1.

Data analysis and visualization
Raw GC/MS data acquired with 
MassHunter software were imported 
into the NIST Automatic Mass Spectral 
Deconvolution and Identification 
Software (AMDIS version 2.73) for 
processing including deconvolution, 
detection of spectral features, and 
feature annotation. Deconvoluted 
spectra were annotated using both 

Table 1. GC and MS parameters.

Parameter Value

Gas Chromatograph

Model Agilent 7890 GC with an MMI

Columns Agilent J&W DB-5ms Ultra Inert GC Column, 15 m × 25 mm, 0.25 µm (p/n 122-5512 UI) 

Injector Mode Split, 1:10

Injector Liner Agilent Inlet liner, Ultra Inert, split, low pressure drop, glass wool, 25/pk (p/n 5190-316)

Injection Volume 1 µL

MMI Temperature Program Initial 70 °C for 0.02 min, 
600 °C/min to 325 °C

Nominal Flow Rate 1 mL/min

Oven Temperature Program Initial 60 °C for 1 min, 
10°C/min to 325 °C

Run Time 31.5 min

Equilibration Time 1.003 min

Mass Spectrometer

Model Agilent 5977 GC/MSD

Ion Source Extractor EI source

Ionization Mode EI, 70 eV

Tune Method Etune 

Acquisition Mode Scan, 50 to 600 m/z

GC Interface/Transfer Line 
Temperature

290 °C

Ion Source Temperature 230 °C

Quadrupole Temperature 150 °C
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GC retention time (RT), and EI mass 
spectral fragmentation pattern based 
on a custom retention-time-locked 
spectral library of metabolites built on 
the Fiehn GC/MS Metabolomics RTL 
Library (part number G1676-90000). 
The Fiehn GC/MS metabolomics RTL 
Library is the most comprehensive 
commercially available GC/MS library of 
metabolite spectra. It currently contains 
over 1,400 entries for approximately 
800 common metabolites, including 
spectra corresponding to partial 
derivatization of metabolites under the 
conditions described here. Each entry 
includes the name, CAS, and PubChem 
numbers of the native molecule for easy 
compound recognition and subsequent 
literature, software, and pathway 
searching. The library and method 
can easily be expanded with more 
compounds to meet specific application 
needs. Additional spectra were added 
to the library by running pure reagent 
standards, from the Golm Metabolome 
Database, and from the Agilent Wiley 
with NIST MS Library software. 

Data processed using AMDIS were 
manually interrogated to address 
miscalls and ambiguities in isomeric 
and other similar species. Compounds 
were kept for further analysis if detected 
in ≥80% of samples of either the PB 
or GB. If a signal for a compound was 
found in ≥80% of samples of one type 
but not present in all of the samples of 
the other type it was assumed absent 
and given a value close to one prior to 
log-base-two transformation. After log 
transformation, the results were tested 
for normality using Kolmogorov-Smirnov 
testing (p <0.05). The differences in the 
abundances of metabolites between 
the two sample groups were compared 
using the Wilcoxon rank sum test with 
Benjamini-Hochberg adjusted p values 
at 5% (false discovery rate adjusted 
p <0.05). 

Differences in the profiles of the two 
sample groups and identification 
of compounds contributing to 
those differences were visualized 
using a ranked heat map of the 
top 50 compounds based on 
Pearson distance measure and 
Ward clustering algorithm, and 
unsupervised principal component 
analysis (PCA) plots generated using 
MetaboAnalyst (version 4.0). Partial least 
square‑discriminant analysis (PLS-DA) 
was applied to determine the variable 
importance in projection (VIP) of each 
compound and a VIP plot was generated 
to rank individual compounds for their 
ability to discriminate between PB 
and GB. 

Compounds of interest were clustered 
into metabolite classes according to 
structural similarity using ChemRICH 
Chemical Similarity Enrichment Analysis 
for Metabolomics online software. 
Bio-activities and health implications of 
specific compounds were investigated by 
interrogating the FooDB and PubChem 
online databases using the Chemical 
Abstracts Service (CAS) number of 
the compound of interest. Metabolic 
pathways were explored using the Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG).

Results and discussion

GC/MS performance for 
derivatized compounds
Samples were derivatized to simplify 
chromatography and make polar 
metabolites more volatile for GC/MS 
analysis. Using methoxyamine HCl in 
pyridine stabilizes reactive carbonyls 
(C=O) such as alpha-keto (=2-oxo) acids, 
which are prone to decarboxylation, 
enolization, and other side reactions 
that would result in more complex 
chromatograms. For example, many 
of the sugars are structural isomers. 
Methoxyamination of these sugars can 
reduce isomer formation. Replacement 

of the exchangeable protons with the 
trimethylsilyl (TMS) -Si(CH3)3 [mass = 73] 
makes polar compounds more volatile.

Despite the complex sample matrix, 
by applying derivatization the GC/MS 
method provided adequate separation 
and detection to facilitate subsequent 
data processing and analysis.

Comparative metabolomics analysis
Analysis of GC/MS data using 
false‑discovery-rate-adjusted statistical 
and multivariate methods revealed that 
171 out of 190 annotated compounds 
(90%) were different (p <0.05) between 
the PB and the GB samples. Many 
compounds were found exclusively 
(31) or in greater quantities (67) in PB, 
while many other compounds were 
found either exclusively (22) or in greater 
quantities (51) in the GB compared with 
the plant-based alternative meat.

A ranked heat map of the 50 compounds 
that contributed most to the difference 
between PB and GB enabled easy 
visualization of the results, providing 
substantial evidence that the 
composition of the sample groups was 
quite different despite their similar NFPs 
(Figure 2). The score plot (Figure 3) from 
unsupervised PCA showed a distinct 
separation in components, with 97.3% 
of the variance explained by the first 
principal component (PC1), likewise 
indicating significant differences 
between PB and GB. The VIP plot 
(Figure 4) generated from the PLS-DA 
models enabled visualization of the 
ranking of individual compounds that 
discriminated between the PB and GB. 

Individual compounds of interest were 
clustered into metabolite classes 
according to structural similarity using 
ChemRICH. Twenty-four classes with 
≥3 structurally similar metabolites were 
found. Of the 24 metabolite classes, 
23 differed significantly (false discovery 
rates adjusted p <0.05) between the GB 
and the PB. The metabolite classes that 
most discriminated between GB and 
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Figure 2. MetaboAnalyst-generated heat map of the top 50 compounds ranked by p values (lowest to highest) that were significantly 
different (p < 0.05) between the GB and the PB. Red (intensity ranges from 0 to 1.5) indicates the higher abundance (upregulation) of a 
compound, while blue (intensity ranges from −0 to −1.5) indicates the lower abundance (downregulation) of a compound. The coding 
below the heat map represents the individual samples analyzed. Figure courtesy of Van Vliet, S. et al.3
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Figure 3. MetaboAnalyst-generated score plot 
created using unsupervised PCA. Figure courtesy 
of Van Vliet, S. et al.3

Figure 4. VIP plot generated from the PLS-DA models shows compounds ranked according to their prognostic importance (VIP scores) in separating the chemical 
profiles of GB and PB. The boxes on the right of the plot show the relative concentrations (blue: low to red: high) of each compound in the GB and PB samples. 
The colored bars at the left of the ranked compounds list the metabolite class of the ranked compounds that were identified using ChemRICH. Figure courtesy of 
Van Vliet, S. et al.3
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the PB were amino acids, nonprotein 
amino acids, saccharides, saturated 
fatty acids, dicarboxylic acids, phenols, 
dipeptides, sugar alcohols, vitamins, 
glycerides, unsaturated fatty acids, and 
amino alcohols (Figure 4). Metabolites 
in metabolite classes such as phenols, 
tocopherols, and phytosterols were found 
exclusively or in greater abundance in the 
plant-based meat alternative. 

Interrogation of the FooDB and PubChem 
online databases using CAS number 
and the KEGG yielded information 
about the biological significance of the 
metabolite classes that differentiated GB 
and PB. For example, the PB contained 
more tocopherols (α, γ, and δ), which, 

according to published reports, are 
compounds with vitamin E activity 
known for antioxidant properties.5 
The polyunsaturated fatty acids, 
arachidonic acid (ARA, C20:4, ω-6) and 
docosahexaenoic acid (DHA, C22:6, 
ω-3), were found exclusively (ARA) or 
in greater quantities (DHA) in the GB 
samples. These fatty acids are major 
constituents of the brain phospholipid 
membrane and have important roles 
in cognition, immunomodulation, 
platelet function and cell signaling, and 
their deficiencies are associated with 
cognitive decline and increased risk of 
cardiovascular disease.6 
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either exclusively or in greater quantities 
in the GB. Heat maps, PCA score plots, 
and VIP plots that are commonly used 
to visualize metabolomics data, as 
well as clustering of compounds into 
metabolite classes, provided further 
insight into the differences between 
the types of meats. The biological 
significance of the comparative data 
was subsequently studied using online 
databases and pathway analysis tools. 
The GC/MS-based metabolomics 
workflow provided substantial evidence 
that despite nearly identical NFPs, GB 
and PB are not the same and thus not 
nutritionally interchangeable. Overall, the 
workflow presents a robust and relatively 
inexpensive approach to profiling many 
types of food samples.
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Conclusion
Given the consumer interest and market 
growth in plant-based meat alternatives, 
understanding the differences between 
alternative and traditional meats beyond 
what is typically provided in NFPs is 
essential. With sample derivatization, 
GC/MS provides an analytical solution 
that enables measurement of various 
and numerous compounds with 
potentially important physiological roles, 
including amino acids, phenols, vitamins, 
unsaturated fatty acids, and dipeptides. 

In this application note, the 7890 
GC with the 5977 GC/MSD provided 
data well suited to in-depth profiling 
of the chemical differences between 
derivatized GB and PB samples. 
False‑discovery-rate-adjusted statistical 
and multivariate analysis of GC/MS data 
revealed that that 90% of annotated 
compounds differed between the PB and 
the GB samples. Many compounds were 
found exclusively or in greater quantities 
in the PB, while many others were found 

Taken together, the results suggest that 
despite nearly identical NFPs, GB and 
PB are not the same and therefore not 
nutritionally interchangeable. Though 
more research is necessary to know for 
sure, the two different types of meats 
appear to provide complementary 
nutritional value.

Method considerations
While GC/MS is a highly robust and 
relatively inexpensive approach to 
untargeted sample profiling, it is not 
well suited to analysis of all metabolites. 
Other hyphenated techniques, for 
example LC/MS, can provide additional 
complementary information about the 
profiles of the samples analyzed. Table 2 
lists the analytes best analyzed by 
techniques other than GC/MS. 

Agilent provides a wide range of 
robust workflows, including analytical 
instrumentation and software, for 
performing global metabolite profiling 
by GC/MS, LC/MS, CE/MS, and SFC/MS. 
Though in this application note various 
custom macros and freeware were 
used to process and analyze GC/MS 
MassHunter data, Agilent Mass Profiler 
Professional (MPP) software is an 
alternative that provides integrated 
identification/annotation of compounds 
and pathway analysis for metabolomics 
studies. MPP can be applied to any 
MS‑based differential analysis to 
determine relationships among two or 
more sample groups and variables. It 
also offers advanced statistical analysis 
and visualization tools for GC/MS, 
LC/MS, CE/MS, and ICP-MS data.

Table 2. Compounds difficult to analyze by GC/MS.7

Concern Example compounds

Compounds that are too light, eluting in solvent front 
before the MS filament is ignited

Acetic acid, ammonia, hydrogen sulfide

Compounds that are too heavy, have a boiling point that 
is too high, or that thermally degrade below 325 °C

Heme B, bilirubin, biliverdin, riboflavin (B2), folate (B9), 
cobalamin (B12)

Nucleotides and other compounds with 
phosphoanhydride bonds (P-O-P)

Acyl coenzyme As (CoA), nicotinamide adenine 
dinucleotide (NAD+ , NADH), ADP, ATP, uridine 
diphosphate (UDP) glucose

Inherently reactive or otherwise unstable metabolites 
α-Aminomalonic acid, adenosine-3',5'-cyclic 
monophosphate (cAMP) 2-nonenal and 4-hydroxynonenal 
(4-HNE)

Quaternary amines

Choline, acetylcholine, phosphocholine, arnitine, 
acetylcarnitine, N6,N6,N6-trimethyllysine, betaine 
(N,N,N‑trimethylglycine), thiamin (B4), trigonelline, 
trimethylamine-N-oxide (TMAO)

Certain guanidinium compounds Arginine, arginosuccinate, creatine, phosphocreatine 
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