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Introduction Results and Discussion

Table 1. GC/Q-TOF acquisition parameters. 

Food fraud is a highly profitable business and
includes activities such as misbranding, mislabeling,
dilution, counterfeiting and adulteration. Among foods
and food ingredients most frequently found
adulterated, there are olive oil, seafood, milk, honey,
fruit juices, spices, coffee and tea. In order to
streamline the characterization of foods, a novel
workflow using high-resolution GC/Q-TOF and
Classifier software has been developed. The workflow
was evaluated using yerba mate, a traditional South
American caffeinated tea. The model was able to
easily distinguish between different brands of
commercially available yerba mate. In addition,
compounds that are characteristic to yerba mate and
contribute to its unique flavor are discussed, as well
as the presence of contaminating polycyclic aromatic
hydrocarbons (PAHs).

Experimental 

Figure 1. A) Yerba mate and mate gourds B) Overlaid
chromatograms from the extracts of the three brands
of yerba mate labeled A, B and C. Arrow points to
caffeine.

Classification Workflow

To build the classification model, six replicates of
each type of yerba mate from three different brands
were extracted and analyzed using a high-resolution
GC/Q-TOF (Figure 1).

The general workflow is outlined in Figure 2. First, a
classification model is built and validated in MPP and
Classifier following the feature finding step in
Unknowns Analysis tool (Figure 2a). After the
classification model is created and exported,
unknown samples can be characterized directly using
Unknowns Analysis and Classifier, bypassing MPP
(Figure 2b).
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Yerba mate samples, purchased at a supermarket in
Buenos Aires, Argentina, were extracted using a
standard QuEChERS protocol. The samples were
analyzed using a 7890 GC with and the 7250 high-
resolution Q-TOF MS in full acquisition mode. The
retention indices were calculated based on the alkane
ladder to ensure compound identification. The GC/Q-
TOF data were processed using the Unknowns
Analysis tool of MassHunter Quantitative Analysis
Software 10.1, Mass Profiler Professional (MPP) 15.1
and Classifier 1.1. The parameters are described in
detail in Table 1.
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Caffeine

GC and MS Conditions: Q-TOF (7250)

GC 7890

Column 30-5MS UI, 15 m, 0.25 mm, 0.25 µm

Inlet MMI, 4-mm UI liner single taper w wool

Injection volume 1 µL

Injection mode Splitless

Inlet temperature 280°C

Oven temperature program
50°C for 2 min; 10°C/min to 300°C, 

10 min hold

Carrier gas Helium

Column flow 1.2 mL/min 

Transfer line temperature 300°C

Quadrupole temperature 150°C

Source temperature 200°C

Electron energy 70 eV

Emission current 5 µA

Spectral acquisition rate 5 Hz

Mass range 45 to 650 m/z

Feature finding was performed in Unknowns Analysis
using SureMass deconvolution followed by NIST17.L
library search (Figure 3). Identity of the compounds
was confirmed with Retention Indices (RI) as well
accurate mass (facilitated by ExactMass feature of
Unknowns Analysis).
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Results and Discussion

Then, classification models using two different algorithms,
PLSDA (Partial Least Square Discrimination) and SIMCA
(Soft Independent Modeling of Class Analogy), were built in
Mass Profiler Professional (MPP) using CEF files imported
from Unknowns Analysis.

Once the data are imported into MPP, sample grouping,
alignment, normalization, filtering, QC using Principle
Component Analysis (PCA, Figure 4), statistical analysis
and Fold Change analysis were performed.

The models were exported from MPP directly to the
Classifier software.

Figure 2. Workflow for sample classification. A) Model
building and validation. B) Unknown samples classification.

Figure 5. Volcano plot and Fold Change analysis.

Figure 4. All the three samples groups can be easily 
separated on PCA plot. 
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Figure 3. Feature finding in Unknowns Analysis. Yerba 
mate sample A. RI calibration supports compound ID. 
ExactMass feature provides additional ID confirmation 
using accurate mass.

To validate the classification model, both positive and
negative controls were prepared using pure and mixed
with various proportions of yerba samples.

Characteristic volatile compounds that predominantly
occur in one of the yerba mate brands tested,
including those associated with flavor and aroma,
have been identified.
Selected results from the Fold Change Analysis
performed in MPP are shown on the Volcano plot
(Figure 5) comparing extracts from brands A vs C.
Compounds highlighted in red are those that are
present in significantly higher levels in A as compared
to C, and those labeled in blue accumulated in sample
C vs A.
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Results and Discussion

Conclusions

• Novel classification workflow for yerba mate authenticity using high-resolution GC/Q-TOF and Classifier software has
been demonstrated.

• A classification model was able to distinguish between different brands of yerba mate as well as “adulterated” yerba
mate samples

• Several PAHs have been identified in yerba mate extracts.

• A variety of flavor compounds were identified predominantly in brand A

Classification results

The classification models were evaluated using the
“adulterated” yerba mate samples created by mixing 5-80%
of one of the brands (C) into the other one (A). Both PLSDA
and SIMCA models were tested. SIMCA model showed a
better distinction between the sample groups. The
visualization examples for SIMCA are shown in Figure 7.
Note that for a positive control for the extract A most of
the model compounds are in the model range (highlighted
in green, Figure 7a). For a sample A adulterated with 5% C,
a few compounds are out of the model range (Figure 7b).

Table 2. Results of Fold Change analysis for selected
volatile compounds. Note, some of these compounds
were not necessarily included in the final classification
model.

Figure 6. PAH and other environmental contaminants
identified in yerba mate extracts

Several PAHs and other environmental contaminants
have also been identified, and typically predominated in
one brand versus another (Figure 6).

Figure 7. Results visualization in Classifier

Figure 8. Classification results using SIMCA model. The
distance from sample A is displayed
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SIMCA model was able to successfully distinguish pure
samples A from other brands, including one not
considered in the model (D), as well as yerba A adulterated
with various levels of yerba C (Figure 8).
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Volatile compounds are labeled. Further details for these
potential compounds of interest are shown in Table 2. 3-
Hydroxy-5,6-epoxy-β-ionone showed one of the most
significant Fold Change among identified flavor
compounds (with high p-Value) between the two groups,
thus potentially contributing to a significant difference in
flavor between these brands of yerba mate.

RT Compound
Mass 

Error*
p Regulation Log FC Alias Flavor

4.96 2(3H)-Furanone, 5-methyl- 0.8 0.006450 up 14.0 α-Angelica lactone
Sweet, solvent-like, oily, coconut, nutty 

with coumarin, tobacco nuances1

5.51 4-Heptenal, (Z)- 1.0 0.013103 down -13.7 oily, dairy, creamy1

6.25 2(5H)-Furanone, 5,5-dimethyl- 0.5 2.557E-10 up 2.4 4,4-Dimethyl-2-buten-4-olide

Aroma component of hop extract, and of 

lavender, sagebrush, narcissus and salmon 

oils2

6.29
2(3H)-Furanone, dihydro-5-

methyl-
0.4 5.834E-19 up 19.7 γ-Valerolactone milky, fatty 1

6.64 2(5H)-Furanone, 3-methyl- 0.4 0.009483 up 13.1 α-Methyl-γ-crotonolactone sweet, tobacco -like odor3

7.22 1-Propanone, 1-(2-furanyl)- 0.5 0.006653 up 13.5 2-Furyl ethyl ketone Fuity taste, sweet and caramelic odor4

7.3 2,4-Heptadienal, (E,E)- 0.3 3.468E-10 down -1.9 fatty, oily, cinnamon1

10.23 L-α-Terpineol 0.6 0.017277 up 14.4
 citrus, tropical fruits, apple, tomato and 

coffee flavors1

10.69
1H-Pyrrole-2,5-dione, 3-ethyl-4-

methyl-
0.3 3.401E-11 up 1.1 Ethylmethylmaleimide sweet, adds body, flue-cured note5

14.12 trans-β-Ionone 1.1 0.000007 down -1.0 Cedar woods, violets2

14.63
2-Propanone, 1-(4-hydroxy-3-

methoxyphenyl)-
0.4 3.949E-07 down -1.3 Guaiacylacetone vanilla, wood origin6

16.48

3-Buten-2-one, 4-(4-hydroxy-

2,2,6-trimethyl-7-

oxabicyclo[4.1.0]hept-1-yl)-

0.6 5.053E-20 up 24.3 3-Hydroxy-5,6-epoxy-β-ionone
fruity, sweet, berry, woody, violet, orris, 

powdery1

16.72
2-Cyclohexen-1-one, 4-(3-

hydroxybutyl)-3,5,5-trimethyl-
0.9 0.000446 down -18.9 3-Oxo-7,8-dihydro-α-ionone unknown

21.23 Abscisic acid 0.6 0.008350 down -1.4 plant hormone
*Mass error shown for quant ion
1The Good Scents Company
2PubChem
3Perfume and Flavor Chemicals  (Aroma Chemicals) Vol.1, By Steffen Arctander, Lulu.com, May 10, 2019 
4Coffee Flavor Chemistry. Ivon Flament. 2002
5Tobacco Flavoring for Smoking Products. John C. Leffingwell, Harvey J. Young & Edward Bernasek. 1972
6Red Wine Technology. Antonio Morata. 2019
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