# Application Note Food Testing & Agriculture



Study of the Metabolites and Flavor Characteristics in Different Subtypes of White Tea by Metabolomics Profiling



## Abstract

This Application Note describes the influence of nonvolatile compounds in white tea on flavor characteristics through an UHPLC-Q-TOF/MS based nontarget metabolomics profiling approach. Profiling of the tea metabolome using UHPLC-Q-TOF/MS followed by feature extraction and alignment resulted in 1,915 metabolite features. Principal component analysis (PCA) and supervised partial least square differential analysis (PLSDA) based on above features demonstrate a clear separation of three subtypes of white tea samples. Up to 99 compounds were identified by matching against authentic standards and databases. Forty-one metabolites exhibit high correlation with flavor; theanine, aspartic acid, asparagine, and AMP are positively correlated with the umami flavor, and flavan-3-ols, theasinensins, procyanidin B3, and theobromine have positive correlations with higher bitterness and astringency flavors. The results demonstrate that metabolomic profiling can be an effective approach to differentiate tea characteristics through characteristic compounds, and that such compounds are potential markers for determining the artificial adulteration and mislabeling of white tea in the market.

## Authors

Chen Yang, Weidong Dai, Junfeng Tan, and Zhi Lin Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China

#### Meiling Lu

Agilent Technologies (China) Co., Ltd, Beijing, China

# Introduction

White tea (Camellia sinensis L.) is one type of traditional Chinese tea mainly produced in the north and east of the Fujian province in China. In recent years, white tea has been demonstrated to have potential beneficial health effects<sup>1</sup>, promoting its consumption in China. White teas of different qualities differ in bio-activity, aroma, flavor, and commercial value. Few known highly abundant substances have been guantitatively investigated in white tea<sup>2,3</sup>. To further the understanding of white tea qualities, and prevent artificial adulteration and mislabeling, a metabolomics approach was applied to systematically study the nonvolatile components in the different subtypes of white tea, aiming to elucidate the characteristic and differential metabolites and their association with white tea characteristics in terms of umami, bitterness, and astringency.

## **Experimental**

### Sample preparation

Fresh tea leaves were classified into subtypes, including 10 Silver Needle (SN), eight White Peony (WP), and 11 Shoumei (SM). These tea leaves were processed into white tea in accordance with a typical white tea processing procedure, which includes withering and drying. Once white tea was produced, it was ground into powder with 100 mesh, and stored at 4 °C. One gram of tea powder from each sample was then infused with 100 mL of boiling water, and maintained at 100 °C for five minutes prior to filtration with a cellulose filter. The equivalent quantitation of tea flavor including umami, bitterness, and astringency flavor was described in detail in a previous study<sup>4</sup>.

### Tea metabolome extraction

Tea powder (0.1 g for each sample) was suspended in 10 mL of hot deionized water (100 °C) for five minutes to extract tea metabolites. A 2 mL amount of the solution was then centrifuged at 10,000 × g for 10 minutes. The supernatants were filtered through a 0.22  $\mu$ m membrane, then analyzed by UHPLC-Q-TOF/MS. Quality control (QC) samples were prepared by mixing an equal volume of each tea sample (50  $\mu$ L). The samples were used to evaluate the data reliability for metabolomics analysis. Figure 1 shows the schematic diagram for sample preparation.



Figure 1. Procedure for tea sample preparation.

# Nontarget metabolomics investigation

An UHPLC system coupled with a Q-TOF mass spectrometer was applied for data acquisition. Table 1 shows the detailed conditions for HPLC separation and MS detection. The TOF scanning and auto MS/MS data were acquired using 6540 LC/Q-TOF, and target MS/MS data for the standard compounds were acquired using 6545 LC/Q-TOF.

### Workflow for metabolomics analysis

To conduct nontarget metabolomics profiling analysis, the accurate MS spectra for each group of samples and the QC samples were initially acquired in TOF scanning mode. The resulting raw data were subjected to molecular feature extraction using Agilent MassHunter Profinder software (Version 8.0), and the results were imported into Mass Profiler Professional (MPP) software (Version 14.8, Agilent Technologies, Santa Clara, CA) for peak alignment and preliminary filtration based on the variance of coefficients ( $\leq 30$  %) for the peaks in the QC samples. The resulting peaks were identified by:

- Matching against databases, including Metlin and HMDB
- Matching with standard compounds, or
- Interpretation based on the MS/MS spectra

To demonstrate the contribution of the differential metabolites to the tea characteristics, the chemometric methods including principle components analysis, partial least square differential analysis, and hierarchy cluster analysis were applied. Pearson correlation analysis was also conducted between the abundance of the identified differential metabolites and the tea flavor. The resultant differential metabolites with high correlation were subjected to validation among all three groups of tea samples. Figure 2 presents the entire workflow for tea metabolomic profiling analysis.

#### Table 1. Instrument conditions.

| Parameter                | Value                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                          | LC Conditions                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| HPLC                     | Agilent 1290 Infinity II LC with built-in degasser; autosampler with temperature control;<br>column temperature control compartment                                                                                                                                                                                                |  |  |  |  |  |
| Column                   | Agilent ZORBAX Eclipse Plus C18, 150 × 3.0 mm, 1.8 μm                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Column Temperature       | 40 °C                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Mobile Phase             | A) 0.1 % Formic acid in H <sub>2</sub> O<br>B) Methanol                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Flow Rate                | 0.4 mL/min                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Injection Volume         | 3.0 µL                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Needle Backflush         | 5 seconds with pure methanol                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Gradient Elution Profile | 0 to 4 minutes       10 to 15 %B         4 to 7 minutes       15 to 25 %B         7 to 9 minutes       25 to 32 %B         9 to 16 minutes       32 to 40 %B         16 to 22 minutes       40 to 55 %B         22 to 28 minutes       55 to 95 %B         28 to 30 minutes       95 to 10 %B         30 to 31 minutes       10 %B |  |  |  |  |  |
|                          | ESI-Q-TOF MS Conditions                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| MS                       | Agilent 6540/6545 ultrahigh-definition accurate-mass Q-TOF LC/MS with dual<br>Jet Stream ESI                                                                                                                                                                                                                                       |  |  |  |  |  |
| Polarity                 | Positive ionization                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Drying Gas Temperature   | 300 °C                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Drying Gas Flow Rate     | 8 L/min                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Nebulizer Gas Pressure   | 35 psi                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Sheath Gas Temperature   | 300 °C                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Sheath Gas Flow Rate     | 11 L/min                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Capillary Voltage        | 3,500 V                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| MS Scan Range            | <i>m/z</i> 100 to 1,100                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| MS/MS Scan Range         | <i>m/z</i> 50 to 1,100                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Reference lons           | m/z 121.0509/922.0098                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Scanning Mode            | TOF scanning, autoMS/MS, and target MS/MS                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

## **Results and discussion**

# Separation and detection of tea extract

An optimized UHPLC gradient elution was applied to separate thousands of compounds in the white tea extract, as described in a previous report<sup>5</sup>. The eluate from the chromatographic column was directed to electrospray ionization-interfaced Q-TOF/MS for detection in scan mode. The selected condition enables reasonable separation of the unknown compounds, as shown in the typical total ion chromatograms for the QC sample (Figure 3). The acquired data were subjected to recursive molecular feature extraction (MFE) using MassHunter Profinder software (V 8.0) to obtain the reliable metabolite features.



Figure 2. Schematic diagram showing the workflow for metabolic profiling analysis.



Figure 3. Typical total ion chromatograms for the QC sample of white teas.

#### Chemometric analysis

The resultant metabolite features from each sample were imported into MPP (V.14.8) software for features alignment and filtration with a variance of coefficients for all the features in the QC samples within 30 %. This resulted in a feature table with 1,915 compound features. Based on these features, the PCA score plot demonstrated that the difference in the metabolite patterns can separate the white tea samples by the category of: SN, WP, and SM (Figure 4A). A supervised PLSDA model was then established and validated for sample prediction based on the metabolites' patterns. The PLSDA score plot also exhibits a clear separation of samples by category based on the selected features (Figure 4B). The confusion matrix table demonstrates the excellent accuracy of the PLSDA model prediction (Table 2).

**Table 2.** The confusion matrix table showing theaccuracy of the prediction.

|                  | SNp | $WP_{p}$ | $\mathrm{SM}_{\mathrm{p}}$ | Accuracy |
|------------------|-----|----------|----------------------------|----------|
| (T)SN            | 10  | 0        | 0                          | 100      |
| (T)BP            | 0   | 8        | 0                          | 100      |
| (T)SM            | 0   | 0        | 11                         | 100      |
| Overall accuracy |     |          |                            | 100      |

T = true

p = prediction

# Tentatively identified metabolite features

Metabolite features (99) were identified based on database searching and accurate MS/MS spectra interpretation. Some of them were further confirmed using the authentic standards shown in Table 3.



**Figure 4.** The PCA score plot (A) and the PLSDA score plot (B) demonstrating the separation of the three subtypes of white teas based on the extracted 1,915 metabolite features. Red circle: WP; green square: SN; blue diamond: SM.

Table 3. Identified compounds with retention time, accurate mass, mass error and their MS2 fragment.

|     |                                  | RT    | Accurate   |        | Error |                    |
|-----|----------------------------------|-------|------------|--------|-------|--------------------|
| No. | Identified Compound              | (min) | Mass (m/z) | Adduct | (ppm) | MS2 Fragments      |
| 1   | Caffeine*                        |       | 195.0875   | M+H    | -1    | 138, 110, 69       |
| 2   | Choline                          | 1.49  | 104.107    | M+H    | -4.8  | 60, 58             |
| 3   | Theobromine*                     | 6.46  | 181.0718   | M+H    | -1.1  | 138, 110, 83       |
| 4   | Betaine                          | 1.58  | 118.0861   | M+H    | -1.7  | 72, 55             |
| 5   | Glycerophosphocholine            | 1.75  | 258.1084   | M+H    | -6.6  | 184, 104, 60       |
| 6   | Theanine*                        | 2.07  | 175.1076   | M+H    | -0.6  | 158, 130, 84, 56   |
| 7   | Pheylalanine(Phe)*               | 5.06  | 166.0855   | M+H    | -4.8  | 120, 103, 91, 77   |
| 8   | Isoleucine(IIe)*                 | 3.27  | 132.1017   | M+H    | -1.5  | 114, 86, 72, 56    |
| 9   | Leucine (Leu)*                   | 3.03  | 132.1017   | M+H    | -1.5  | 86, 69, 56         |
| 10  | Proline (Pro)*                   | 1.66  | 116.0708   | M+H    | 1.7   | 70, 43             |
| 11  | Tryptophan(Typ)*                 | 7.79  | 205.097    | M+H    | -1    | 188, 159, 146, 118 |
| 12  | Valine(Val)*                     | 1.97  | 118.0862   | M+H    | -0.9  | 72, 63, 58, 55     |
| 13  | Tyrosine(Tyr)*                   | 2.74  | 182.0809   | M+H    | -1.7  | 136, 119, 91, 77   |
| 14  | Asparagine (Asn)*                | 1.52  | 133.0606   | M+H    | -1.5  | 74                 |
| 15  | Glutamine (Gln)*                 | 1.54  | 147.076    | M+H    | -2.7  | 130, 84, 56        |
| 16  | Aspartic acid (Asp)*             | 1.55  | 134.045    | M+H    | 1.5   | 88, 74, 43         |
| 17  | gamma-Aminobutyric acid (GABA)*  | 1.52  | 104.0707   | M+H    | 1     | 86, 69             |
| 18  | Catechin (C)*                    | 8.86  | 291.0865   | M+H    | 0.7   | 139, 123, 95       |
| 19  | Epicatechin (EC)*                | 11.32 | 291.0864   | M+H    | 0.3   | 207, 139, 123, 55  |
| 20  | Gallocatechin (GC)*              | 5.24  | 307.0815   | M+H    | 0.7   | 223, 195, 163, 139 |
| 21  | Epigallocatechin (EGC)*          | 8.65  | 307.0813   | M+H    | 0     | 289, 153, 139      |
| 22  | Epicatechingallate (ECG)*        | 13.27 | 443.0971   | M+H    | -0.5  | 273, 153, 139, 123 |
| 23  | Gallocatechingallate (CG)*       | 11.63 | 459.0923   | M+H    | 0.2   | 289, 181, 153, 139 |
| 24  | Epigallocatechingallae (EGCG)*   | 10.43 | 459.0923   | M+H    | 0.2   | 441, 289, 153, 139 |
| 25  | Epigallocatechin digallate       | 13.45 | 611.103    | M+H    | -0.2  | 441, 289, 153      |
| 26  | Epigallocatechin 3-methylgallate | 12.31 | 473.108    | M+H    | 0.2   | 455, 289, 167, 139 |
| 27  | Epigallocatechin 3-coumaroate    | 16.23 | 453.1178   | M+H    | -0.4  | 435, 209, 139      |
| 28  | Epiafzelechin*                   | 13.39 | 275.0912   | M+H    | -0.7  | 191, 139, 107, 55  |

\* Confirmed by standard compounds

| Table 3 | <ul> <li>List of identified</li> </ul> | compounds with | h retention time | e, accurate mass | , mass error | and their | MS2 |
|---------|----------------------------------------|----------------|------------------|------------------|--------------|-----------|-----|
| fragme  | nt (continued).                        |                |                  |                  |              |           |     |

| No. | Identified Compound                       | RT<br>(min) | Accurate<br>Mass ( <i>m/z</i> ) | Adduct | Error<br>(ppm) | MS2 Fragments      |
|-----|-------------------------------------------|-------------|---------------------------------|--------|----------------|--------------------|
| 29  | Epiafzelechin 3-gallate                   |             | 427.1027                        | M+H    | 0.7            | 275, 153, 139, 107 |
| 30  | 1-Methylxanthine                          |             | 167.0563                        | M+H    | -0.6           | 110, 55            |
| 31  | Adenosine*                                | 3           | 268.1042                        | M+H    | 0.8            | 136                |
| 32  | Guanosine*                                | 3.31        | 284.0992                        | M+H    | 0.7            | 152, 135           |
| 33  | 5'-Methylthioadenosine                    | 8.22        | 298.0968                        | M+H    | -0.3           | 136                |
| 34  | (S)-5'-Deoxy-5'-(methylsulfinyl)adenosine | 2.58        | 314.0919                        | M+H    | 0.3            | 164, 136, 97       |
| 35  | Cytidine 2'-phosphate                     | 1.73        | 324.0595                        | M+H    | 1.2            | 112                |
| 36  | Cyclic AMP                                | 2.35        | 330.0594                        | M+H    | -1.2           | 312, 136           |
| 37  | AMP*                                      | 1.87        | 348.0707                        | M+H    | 0.9            | 136                |
| 38  | ADP*                                      | 1.77        | 428.0362                        | M+H    | -1.2           | 348, 136           |
| 39  | Caffeoylshikimic acid                     | 12.64       | 337.0891                        | M+H    | -8             | 163, 145, 135, 117 |
| 40  | 3-p-Coumaroylquinic acid                  | 11.95       | 339.1075                        | M+H    | 0              | 165, 147, 119      |
| 41  | 4-p-Coumaroylquinic acid                  | 8.89        | 339.1074                        | M+H    | -0.3           | 147, 119           |
| 42  | 1-Caffeoylquinic acid                     | 11.75       | 355.1021                        | M+H    | -0.8           | 337, 309, 163, 121 |
| 43  | 4-Caffeoylquinic acid                     | 7.13        | 355.1021                        | M+H    | -0.8           | 337, 309, 163, 121 |
| 44  | 4 3,5-Di-caffeoylquinic acid              |             | 517.1337                        | M+H    | -0.8           | 471, 453, 163, 121 |
| 45  | Chlorogenic acid*                         |             | 355.1025                        | M+H    | 0.3            | 163, 145, 117, 89  |
| 46  | 6 Theogallin*                             |             | 345.0817                        | M+H    | 0.3            | 327, 171, 153, 125 |
| 47  | 7 Quinic acid*                            |             | 193.0711                        | M+H    | 2.1            | 149, 111, 95, 83   |
| 48  | 3 Strictinin*                             |             | 652.1146                        | M+NH4  | 0.3            | 482, 447, 303, 277 |
| 49  | Trigalloyl glucose                        | 12.12       | 654.13                          | M+NH4  | -0.1           | 467, 297, 153      |
| 50  | Benzyl primeveroside                      | 11.81       | 425.142                         | M+Na   | 0.5            | 331, 255, 179, 153 |
| 51  | Phenylethyl primeveroside                 | 14.46       | 455.1294                        | M+K    | -4.4           | 351                |
| 52  | Linalool primeveroside                    | 25.99       | 471.2205                        | M+Na   | 1              | 335, 333           |
| 53  | Linalool oxide primeveroside              | 20.5        | 487.2156                        | M+Na   | 1.3            | 335, 333           |
| 54  | Linalool oxide primeveroside isomer       | 18.08       | 503.191                         | M+K    | -0.4           | 351                |
| 55  | Proanthocyanidin A1                       | 3.44        | 577.1334                        | M+H    | -1.2           | 559, 425, 407, 121 |
| 56  | Procyanidin B1*                           | 8.39        | 579.1501                        | M+H    | 0.7            | 409, 291, 289, 127 |
| 57  | Procyanidin B2*                           | 9.46        | 579.1503                        | M+H    | 1              | 409, 301, 289, 127 |
| 58  | Procyanidin B3                            | 7.12        | 579.1496                        | M+H    | -0.2           | 409, 271, 127      |
| 59  | Procyanidin B5                            | 7.41        | 579.1494                        | M+H    | -0.5           | 427, 409, 289, 127 |
| 60  | Procyanidin C1                            | 8.21        | 867.2133                        | M+H    | 0.2            | 849, 591, 153, 139 |
| 61  | Theaflavin*                               | 24.29       | 565.134                         | M+H    | -0.2           | 427, 259, 139      |
| 62  | Theaflavin-3-gallate*                     | 24.05       | 717.1447                        | M+H    | -0.4           | 699, 397, 153, 139 |
| 63  | Theaflavin 3,3'-digallate*                | 24.28       | 869.1554                        | M+H    | -0.7           | 731, 561, 333, 139 |
| 64  | Theasinensin A                            | 8.53        | 915.1617                        | M+H    | 0.2            | 897, 763, 139, 153 |
| 65  | Theasinensin B                            | 5.9         | 763.1514                        | M+H    | 1.2            | 595, 443, 305, 139 |
| 66  | Theasinensin C                            | 4.82        | 611.1392                        | M+H    | -1.2           | 593, 139           |
| 67  | Theasinensin F                            | 9.82        | 899.167                         | M+H    | -0.9           | 425, 287, 153      |
| 68  | B Luteolin-8-C-glucoside*                 |             | 449.1077                        | M+H    | -0.5           | 353, 329, 299      |

\* Confirmed by standard compounds

| Table 3. List of identified compounds with retention time, accurate mass, mass error and their MS2 |
|----------------------------------------------------------------------------------------------------|
| fragment (continued).                                                                              |

| No. | Identified Compound                     | RT<br>(min) | Accurate<br>Mass ( <i>m/z</i> ) | Adduct | Error<br>(ppm) | MS2 Fragments      |
|-----|-----------------------------------------|-------------|---------------------------------|--------|----------------|--------------------|
| 69  | Vitexin*                                |             | 433.1126                        | M+H    | -0.9           | 313, 139, 85       |
| 70  | Isovitexin*                             | 18.13       | 433.1126                        | M+H    | -0.9           | 313, 283, 121, 81  |
| 71  | Isovitexin 2"-O-glucoside               | 11.55       | 595.1654                        | M+H    | -0.6           | 433, 313, 139, 85  |
| 72  | Quercetin 3-0-galactoside*              | 18.53       | 465.1031                        | M+H    | 0.7            | 303, 165, 91       |
| 73  | Quercetin 3-0-glucoside*                | 18.88       | 465.1032                        | M+H    | 0.9            | 303                |
| 74  | Quercetin 3-0-glucuronide               | 17.27       | 479.0815                        | M+H    | -1.5           | 303                |
| 75  | Rutin*                                  | 18.87       | 611.1613                        | M+H    | 1              | 465, 303, 85       |
| 76  | Quercetin diglucoside                   | 15.78       | 627.1554                        | M+H    | -0.3           | 303                |
| 77  | Quercetin 3-0-glucosylrutinoside*       | 17.75       | 773.2143                        | M+H    | 1              | 611, 465, 303      |
| 78  | Quercetin 3-0-galactosylrutinoside*     | 17.59       | 773.2145                        | M+H    | 1.3            | 611, 465, 303, 145 |
| 79  | Quercetin triglucoside                  | 14.86       | 789.2085                        | M+H    | 0.1            | 303                |
| 80  | Myricitrin*                             | 17.76       | 465.103                         | M+H    | 0.4            | 319                |
| 81  | Myricetin 3-0-glucoside                 | 15.78       | 481.098                         | M+H    | 0.6            | 319                |
| 82  | Myricetin 3-0-galactoside*              | 15.61       | 481.0981                        | M+H    | 0.8            | 319, 127, 85       |
| 83  | Apigenin-6,8-C-diglucoside*             | 12.69       | 595.1665                        | M+H    | 1.2            | 559, 475, 307, 153 |
| 84  | Apigenin-6-C-glucosyl-8-C-arabinoside   | 14.54       | 565.1559                        | M+H    | 1.2            | 427, 409, 391, 379 |
| 85  | Apigenin-6-C-arabinoside-8-C-glucoside* | 15          | 565.1559                        | M+H    | 1.2            | 547, 529, 511, 469 |
| 86  | Kaempferol 3,7-dirhamnoside             | 16.7        | 579.1706                        | M+H    | -0.4           | 287                |
| 87  | Kaempferol 3-0-arabinoside*             | 21.59       | 419.0971                        | M+H    | -0.5           | 287                |
| 88  | Kaempferol 3-0-glucoside*               | 21.23       | 449.1082                        | M+H    | 0.7            | 287, 85            |
| 89  | Kaempferol 3-0-galactoside*             | 20.58       | 449.1083                        | M+H    | 0.9            | 287                |
| 90  | Kaempferol 7-0-rutinoside               | 20.59       | 595.1656                        | M+H    | -0.3           | 449, 287           |
| 91  | Kaempferol 3-0-rutinoside*              | 21.31       | 595.1663                        | M+H    | 0.8            | 449, 287, 147, 331 |
| 92  | Kaempferol 7-(6"-galloylglucoside)      | 18.83       | 601.1186                        | M+H    | -0.3           | 287, 153, 125      |
| 93  | Kaempferol 3-(6"-galloylglucoside)      | 19.94       | 601.1186                        | M+H    | -0.3           | 287, 153, 125      |
| 94  | Myricetin 3-(3"-galloylrhamnoside)      | 8.98        | 617.1134                        | M+H    | -0.5           | 319, 153, 125      |
| 95  | Kaempferol 3-0-glucosylrutinoside*      | 20.37       | 757.2192                        | M+H    | 0.8            | 595, 449, 287, 331 |
| 96  | Kaempferol 3-0-galactosylrutinoside*    | 19.49       | 757.2197                        | M+H    | 1.5            | 595, 449, 287, 331 |
| 97  | N-(1-Deoxy-1-fructosyl)leucine          | 3.41        | 294.1551                        | M+H    | 1              | 276, 258, 230, 212 |
| 98  | N-(1-Deoxy-1-fructosyl)phenylalanine    | 5.27        | 328.1392                        | M+H    | 0.3            | 292, 264, 132, 120 |
| 99  | Theanine glucoside                      | 2.22        | 337.1605                        | M+H    | -0.3           | 301, 208, 158      |

\* Confirmed by standard compounds

### Metabolite variation among the subtypes of white tea

Hierarchy cluster analysis was used to visualize the abundance variations for the 64 out of 99 identified metabolites with significant differences across the three subtypes of white tea ( $P \le 0.05$ ). Figure 5 shows that each subtype of white tea can accurately be grouped based on the patterns of the identified differential metabolites. These metabolites include primarily four groups of compounds:

- Catechins/dimeric catechins
- Phenolic acids/hydrolysable tannins/amino acids
- Flavonol glycosides/flavone glycosides
- Alkaloids/nucleotides/aroma precursors

Among the four groups of compounds, most flavonol glycosides/flavone glycosides show the lowest abundance in Silver Needle, relatively high abundance in White Poeny, and the highest abundance in Shoumei.

ECG\* EGCG\* GCG\* Epigallocatechin digallate Epiafzelechin 3-gallate EGC\* EC' Procyanidin B1 Procyanidin B2 Theasinensin A Theasinensin B Theasinensin C Theasinensin F Theaflavin Chlorogenic acid Theogallin\* Strictinin TrigalloyI glucose Quinic acid\* 4-p-Coumaroylquinic acid Proline (Pro)\* Valine(Val)\* Isoleucine(IIe)\* Leucine (Leu) Asparagine (Asn)\* Aspartic acid (Asp) . Theanine\* Phevlalanine(Phe) Tyrosine(Tyr)\* Glutamine (GIn)' Kaempferol 3-0-glucoside' Kaempferol 3-0-galactoside\* Kaempferol 3,7-dirhamnoside Kaempferol 3-0-rutinoside Kaempferol 3-0-glucosylrutinoside Kaempferol 3-0-galactosylrutinoside Kaempferol 7-(6'-galloylglucoside) Quercetin 3-0-alucuronide Quercetin 3-0-glucoside\* Rutin Quercetin 3-0-glucosylrutinoside Quercetin 3-0-galactosylrutinoside Myricitrin\* Myricetin 3-0-glucoside Apigenin-6-C-glucosyl-8-C-arabinoside Apigenin-6-C-arabinoside-8-C-glucoside Apigenin-6,8-C-diglucoside Isovitexin 2'-0-glucoside Vitexin\* Isovitexin\* Benzyl primeveroside Linalool oxide primeveroside isomer Linalool primeveroside (S)-5'-Deoxy-5'-(methylsulfinyl)adenosine 5'-Methylthioadenosine Adenosine Caffeine\* Choline Theobromine Betaine

Theanine glucoside



Figure 5. Hierarchy cluster analysis demonstrating the abundance variation of the significant metabolites among the three subtypes of white tea.

# Correlation of the differential metabolite levels with tea flavor

Pearson correlation analysis was conducted to discover the metabolites contributing to the specific tea flavor including aspects such as umami, bitterness, and astringency. Figure 6A shows that 41 of 64 metabolites exhibit high correlation ( $R^2 \ge 0.9$ ) with either flavor. The yellow or blue color of the cell indicates that the compound abundance is either positively or negatively correlated, respectively, with the corresponding flavor. Figure 6A shows that most differential compounds exhibit consistent tendency for the three types of characteristic tea flavor. Figures 6B to 6D show the abundance variations for the major class of differential metabolites ( $P \le 0.01$ ) in three subtypes of white tea.



**Figure 6.** Correlation of the identified differential compound abundances with white tea quality in terms of umami, bitterness, and astringency taste. (A) Pearson correlation plot showing how differential compound abundances either positively (yellow) or negatively (blue) correlate with the three types of tea taste; (B to D) Variation of the abundance for the major differential compounds including catechins and dimeric catechins (B), flavonol glycosides and flavone glycosides (C), and phenolic acids, hydrolyzable tannins, and amino acids (D).

Catechins and dimeric catechins that positively correlate with the white tea flavor display a relatively higher presence in SN and WP than SM subtypes of white tea (Figure 6B). Flavonol glycosides and flavone glycosides negatively correlate with tea flavor, and most of them show a low presence in SN, and are relatively abundant in WP and SM (Figure 6C). Some acids such as Asn, TG, and choline showed a high presence in SN and WP, but a reverse tendency was observed for other acids (Figure 6D).

## Conclusion

Nontargeted metabolomic profiling analysis was successfully performed for studies on white tea characteristics with three major subtypes. Among the identified differential metabolites, 64 showed significant abundance differences among subtypes of white teas, and 41 exhibited excellent correlation with the umami, bitterness, and astringency of the white teas. This indicates that these metabolites contribute primarily to the flavor characteristics of the subtypes of tea, and have the potential to serve as markers for quality control of white tea.

## References

- Mao, J. T.; *et al.* White Tea Extract Induces Apoptosis in Non–Small Cell Lung Cancer Cells: the Role of Peroxisome Proliferator-Activated Receptor-γ and 15-Lipoxygenases. *Cancer Prev. Res.* **2010**, *3(9)*, 1132–1140.
- Ning, J-M.; et al. Chemical Constituents Analysis of White Tea of Different Qualities and Different Storage Times. Eu. Food Res. Technol. 2016, 242(12), 2093–2104.
- Tan, J.; et al. Flavonoids, Phenolic Acids, Alkaloids and Theanine in Different Types of Authentic Chinese White Tea Samples. J. Food Compos. Anal. 2017, 57, 8–15.
- Dai, W.; et al. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (*Camellia sinensis* L.). J. Agric. Food Chem. **2015**, 63, 9869–9878.
- 5. Tan, J.; *et al.* Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. *Food Res. Intern.* **2016**, *79*, 106–113.

#### www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Printed in the USA, April 9, 2019 5994-0866EN

