

Extending Capabilities of Real-Time Database Search on the Orbitrap Eclipse Tribrid Mass Spectrometer for Multiplexed Proteomics

Yang Liu¹, William D. Barshop¹, Amirmansoor Hakimi¹, Jesse D. Canterbury¹, Romain Huguet¹, Rosa Viner¹

¹Thermo Fisher Scientific, San Jose, CA, USA

The world leader in serving science

Introduction

The Real-Time Search (RTS) feature implemented on the Orbitrap Eclipse grants the ability to generate peptide spectrum matches (PSMs) from MS2 spectra during acquisition via online database search. Only upon confident identifications, the instrument may be triggered to proceed with SPS-MS3. By using the RTS feature, the acquisition efficiency would be largely improved while the precision and accuracy are well maintained.

Purpose

To evaluate recent improvements to RTS based TMT quantitation workflow including: 1) Close-out to prevent acquisition of excess MS3s for proteins which have already reached a sufficient depth of quantitative sampling, 2) Online false discovery rate (FDR) assessments to predicate MS3 events on real-time PSM-level FDR estimates.

Results

The RTS-MS3 workflow increased quantification accuracy and the number of quantified features compared to SPS MS3 methods. New capabilities of RTS, Close-out and FDR filtering, further contributed to more quantified IDs and better quantification performance.

Sample Preparation

Thermo Scientific[™] Pierce[™] TMT11plex Yeast Digest Standard was resuspended in buffer (5% Acetonitrile in 0.1% TFA) to a final concentration of 250ng/µl.

Ecoli peptides of different ratios (0:1:2:4:8) was spiked into an equal amount of Hela peptides and labeled with TMTpro 16 plex.

LC/MS Analysis

TMT 11 plex Yeast digest standard(500 ng) was loaded onto a 50 cm EASY-Spray[™] column (ES803A) and separated by 50min gradient using a Thermo Scientific[™] Easy-nLC[™] 1000 at 250 nL/min flow rate.

For TMTpro 16 plex 2 proteome (human and E.coli) samples, an Ultimate 3000 RSLC nano system was used with a 50 cm EASY-SprayTM column (ES803A) at 300nL/min flow rate. One μ g of sample was loaded and followed by a 120min-gradient separation.

Both experiments were performed on an Orbitrap Eclipse Tribrid mass spectrometer. Data acquisition was carried out on the ICSW 3.4.

Data Analysis

MS² spectra were analyzed during RTS by the Comet search algorithm. Closeout and FDR filtering were setup in corresponding experiments.

Post-acquisition data analysis was performed by Sequest HT in Thermo Scientific[™] Proteome Discoverer[™] Software 2.5.

Thermo Fisher

Materials and Methods

MS Method

Real-Time Search Setup

Real-Time Search Extended Properties

Time Range	e (min) 0-70		Real-Time Search Properties				
_	мя от			FASTA Database	[Embedde	d] Yeast_swisspro
	MIPS			Enzyme		mport Trypsin	Export Clear
	Intensity		Stati	ic Modificatic ADD	DELETE		
	Precursor Fit		1	Modification Name	∆ Mass 57.0215	Sites	
	Charge State		2	TMT6plex	229.1629	Kn	
	Dynamic Exclusion		L				
2	ddMS ² IT HCD		Varia	ble Modifica			
sec	Real-Time Search		T I	Modification Name	∆ Mass	Sites	Frag Neutral Los
	Precursor Selection Range		1	Oxidation	15.9949	М	0
-	Precursor Ion Exclusion	-	<				
	Isobaric Tag Loss Exclusion			Maximum Missed Clea	avages [1		*
	10	0.056		Maximum Variable Mo Peptide	ods /) 7	*
	585			Precursor Neutral Loss	m/z	J ,0	
-	ddMS ⁸ OT HCD			Use Custom Fragment	lons		

•	EXTENDED PROPERTIES							
	Use as a Trigger Only							
	TMT SPS MS3 Mode							
	Enable Close-Out							
	Maximu	m Search	Time (ms) 35	5	÷			
					ú			
Scor	ing Thres	ihhe ADD			ORT C			
	Xcorr	dCn	Precursor PPM	Charge State				

Real-Time Search

<u>RTS Close-Out</u> (Limit number of peptides identified for each protein)

L	lse as a T	rigger (Jahr			
'n			July			
	MT SPS	MS3 M	ode	-		
E	nable Cl	ose-Ou	t	~		
N	Max peptides per protein				-	-
N	Maximum Search Time (ms)					-
						e
Scorin	g Threst	the ADD		-		1
	Xcorr	dCn	Precursor P	PM	Charge State	
1	1.4	0.1	10		1	

RTS Trigger-Only

(SPS selection of top abundant fragments)

-	-	Ð	CTENDED PRO	OPERT	IES	_
	Use as a	Trigger	Only	•		
	Inverse	Trigger			1	
	TMT SP	S MS3 M	ode			
	Enable (Close-Ou	t			
	Maximu	m Searcl	h Time (ms)	35		-
						e
icor	ing Thre	shhe ADO		-		AT C
	Xcorr	dCn	Precursor P	PPM	Charge State	
1	1.4	0.1	10		1	

<u>RTS FDR</u> (MS3 triggered by real-time PSM-level FDR estimates)

	000							
	Maximum Missed Cleavages	1	:					
	Maximum Variable Mods / Peptide	0						
	Enable FDR Filtering							
	Precursor Neutral Loss m/z 0,0							
	Use Custom Fragment lons							
v	EXTENDED PRO	OPERTIES						
	Use as a Trigger Only							
	TMT SPS MS3 Mode	\checkmark						
	Enable Close-Out							
	Maximum Search Time (mr)	35						

Proper Threshold Applied in Data Analysis to Ensure Data Quality

RTS-SPS-MS3 Quantitative Precision at Different Reporter Ion S/N Level

- In multiplexed quantitative analysis, the quality of reporter ions could largely influence the quantitation performance.
- We applied the new feature of 100% "Minimum Channel Occupancy" in PD 2.5 software to ensure the dataset completeness.
- By increasing the threshold of average reporter ion signal-tonoise ratio, the precision of quantitative analysis is improved.

Quantitation Performance of Extended Features in RTS-SPS-MS3

of Quantified Proteins (Average Reporter Ion S/N > 10)

• Real-Time Search improved number of quantified proteins by 17%, which is further boosted up to 26% by Close-out.

• Close-Out and Trigger-Only quantified similar number of proteins but each feature owns unique IDs.

Quantitation Performance of Extended Features in RTS-SPS-MS3

- RTS and RTS-FDR improved number of quantified proteins by **13%** and **14%**, compared to SPS-MS3.
- FDR filter enabled more quan spectra in addition to RTS.

Quantitation Performance of Extended Features in RTS-SPS-MS3

- RTS "TMT mode" option (RTS-informed selection of TMT containing fragments for SPS isolation) exhibited better quantitation performance compared to abundance dependent methods (SPS, RTS-TriggerOnly).
- CloseOut and FDR filter improved quantitation IDs while still maintained the outstanding quantitation performance.

Human: Ecoli Mixed Proteome Quantification

• RTS and RTS-Close Out improved number of quantified proteins by 25% and 30%, compared to SPS-MS3

- Real-time Search feature on Orbitrap Eclipse, benefiting from the online database search, enhanced the quantification accuracy and the number of quantified features compared to SPS MS3 methods
- The new capabilities in the RTS-MS3 workflow extended its capabilities for TMT quantitation.
 - Close-Out improved number of quantified proteins.
 - FDR filter increased number of quantified peptides and quan spectra.
- Both new capabilities achieved high accuracy and precision in quantitation performance.

© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

