

Head in the Right Direction with Headspace Analysis Method Development, Method Optimization, and Troubleshooting

Simon Jones GC Application Scientist July 30, 2020

DE.4178703704

What Is Headspace?

Why Headspace?

Offers clean injections into GC systems

• Less maintenance – only the volatile vapors are injected into the system

Less sample preparation

Ideal for analysis of volatile analytes in matrices that can't be directly injected into the GC.

*Not suitable for some applications

Types of Headspace

Static vs. dynamic

Dynamic – A continuous gas stream is passed through a sample that then elutes the compounds of interest onto a trap, where they are held and concentrated. At some point in the process, the trap is heated to desorb the analytes of interest onto the column to be chromatographed.

- Typically purge and trap
- Headspace trap

Static – The sample is placed into a closed vial, the vial is heated and shaken, and the sample is extracted and injected directly into the GC.

- Loop system
- Syringe
- Pressure balance

Types of Static Headspace Autosamplers

Gas tight syringes

• Not a 'true' closed system. A small amount of sample can be lost as the syringe moves from the vial to the inlet.

Balanced pressure

• The sample volume injection is regulated by time. Vial pressure is depressurized onto the column. The amount of sample injected is controlled by injection duration.

Pressure/loop systems

• Fixed loop size determines injected volume. The metal surface area is greater in the loop system.

Agilent 7697A Loop System

Some Math to Make it Fun

CoVs = CgVg + CsVsPartition coefficient: $K = \frac{Cs}{Cg}$ Phase ratio: $\beta = \frac{Vg}{Vs}$ $Cg = \frac{Co}{(\beta + K)}$

DE.4178703704

What Should We Focus On?

$$Cg = \frac{Co}{(\beta + K)}$$

When K is small, β has a bigger effect

When K is large, β has a minimal effect

What Should We Focus On?

Partition coefficient: $K = \frac{Cs}{Cg}$

The smaller "K", the greater the concentration of the analyte in the gas phase.

<u>Like dissolves like</u>. The greater the solubility or affinity that an analyte has for the matrix, the larger the K.

What drives *K*?

What Drives *K*?

Temperature:

• Higher temperatures drive *K* down

Solubility:

- Add salt
- Add another solvent to the matrix

What Parameters Drive Success?

Incubation temperature

• Typically 20 °C below the solvent BP

Incubation time

Shaking

Efficient transfer of the sample from the vial to the column

Use of salts

Things to Consider

- You will need to have at least 5 mL of headspace in the vial.
- Keep the incubation temperature 10 to 20 °C below the BP of the solvent/matrix.
- Long incubation times 'generally' only delay the first sample.
- Higher split ratios help get the sample onto the column more efficiently; this results in sharper peaks.
 - Lower splits are 'OK' with larger id columns. Higher volumetric flow transfers sample faster.
- Try to keep the sample from touching the vial septum.
 - Sample can get into the sample probe and contaminate the loop
- Think about the temperature limitation of vial septa
 - Be considerate of sample/analyte degradation

Headspace Parameters

Temperatures	 Oven Sample loop Transfer line Transfer line interface
Times	 Vial equilibration Injection duration GC cycle time
Vial and loop	 Vial size Shake vials while in oven Vial fill mode Loop fill mode

Incubation Temperature Increase

20 minutes K decreases with *T* Not equal for all analytes

Incubation Time

Change in Vial Size

4 mL sample, changing β 10 mL vial β = 1.5 20 mL vial β = 4

Change in Sample Volume in a 10 mL Vial

Change in Sample Volume in a 20 mL Vial

Change in Sample Volume and Vial Size

What Else Can Effect Signal?

Loop size

Loop pressure

Split ratio

Liner type

Change in Loop Size

40:1 split (64 mL/min)

Change in Split Ratio

Change in Split Ratio

Change in Split Ratio

Change in Loop Pressure First two eluting peaks

Vial fill pressure: 40 psi Loop fill rate: 30 psi/min Inlet pressure: 28.3 psi

Is That a Good Way to Increase Signal?

The Effect of Vial Pressure, Loop Pressure, and Fill Rate

Changing Vial Pressure

5 psi final loop pressure

Liner Size and Type

Use of Salts

Decreases the solubility of polar analytes in aqueous samples Decreases *K* favoring the gas (headspace) phase

Potassium carbonate (K_2CO_3) Ammonium chloride (NH_4CI) Ammonium sulfate ((NH4)₂SO₄) Sodium chloride (NaCl) Sodium citrate (Na₃C₆H₅O₇) Sodium sulfate (Na₂SO₄)

Use high quality, low impurity salts

How Much Salt Do I Add?

20 mL vial 80 °C oven temperature 20-minute incubation

Change in Matrix Volume with Salt

Can I Inject Multiple Times?

Headspace of Solid Matrices

Samples are ground to increase surface area

They are used for solvents in plastics or polymers

When a matrix match is not available, MHE – "multiple headspace extraction" is used

"Multiple Headspace Extraction for the Quantitative Determination of Residual Monomer and Solvents in Polystyrene" 5991-0974EN

Method Development Tools

dit Method Parameters

Stand Alone HS Method Development Viewer

Method Development

Manual

Would you like to increment a method setting over subsequent runs?

Assisted

Export Print Exit

 \times

Method Development Tool

Method Development Tool

🝵 Edit Method Param	eters					-	×
Temperatures	Times	Vial and Loop	Carrier	Advanced Functions	Sequence Actions	Vethod Development	
Method Dev	elopment						
Manu Would you like to None Assisted	increment a method	setting over subsequent ru	ns?				
Create m	nethod based on a sp	ecific application					
Convert	an existing valve and	l loop Headspace method					
Convert	an existing pressure	transfer Headspace method					
		Apply OK	Са	ncel Help]		

Method Development Tools

Create method base	d on a specific application	×
Sample Matrix		
Matrix Type:	Liquid O Solid	
Vial Size:	20 mL 🗸	
Sample Volume	e: 2 mL	
Solvent		
Solvent:	Hexadecane \lor	
Boiling Point:	287 °C	
Compound(s) of In	iterest	
Highest Boiling	Point: 160 °C	
	Preview Changes Cancel Help	

Create Method Based on Specific Application

Red parameters are what will be change from the initial method.

Green parameters are the new settings.

Confirm method changes			>
Original Method		Modified Method	
Temperature Settings:		Temperature Settings:	
Oven Temperature (°C):	80	Oven Temperature (°C):	145
Loop Temperature (°C): Transfer Line Temperature (°C):	85 120	Loop Temperature (°C): Transfer Line Temperature (°C):	145 160
Timing Settings:		Timing Settings:	
Vial Equilibration (min):	20.00	Vial Equilibration (min):	30.00
Injection Duration (min):	1.00	Injection Duration (min):	0.50
GC Cycle Time (min):	20.00	GC Cycle Time (min):	25.00
Vial and Loop Settings:		Vial and Loop Settings:	
Vial Size:	20	Vial Size:	20
Vial Shaking:	Level 3, 36 shakes/min	Vial Shaking:	Level 1, 18 shakes/min
with acceleration of 125 cm/s ²		with acceleration of 60 cm/s ²	
Fill Mode:	Default	Fill Mode:	Default
Fill Pressure (psi):	40	Fill Pressure (psi):	15
Loop Pamp Pate (nci/min):	20	Loop Ramp Rate (nci(min))	20
Loop Final Dressure (psi):	30	Loop Fingl Pressure (psi)	20
Loop Equilibration Time:	0.05	Loop Equilibration Time:	0.05
Carrier Settings:		Carrier Settings:	
Carrier Control Mode:	GC controls Carrier	Carrier Control Mode:	GC controls Carrier
Advanced Settings:		Advanced Settings:	
Extraction Mode:	Single Extraction	Extraction Mode:	Single Extraction
Vent After Extraction:	ON	Vent After Extraction:	ON
Post Injection Purge: min	Default, 100 mL/min for 1	Post Injection Purge: min	Default, 100 mL/min for
Acceptable Leak Check:	Default, 0.2mL/min	Acceptable Leak Check:	Default, 0.2mL/min
Sequence Actions:		Sequence Actions:	
Vial Missing::	Skip	Vial Missing::	Skip
Wrong Vial Size:	Continue	Wrong Vial Size:	Continue
Leak Detected:	Continue	Leak Detected:	Continue
System Not Ready:	Abort	System Not Ready:	Abort
Print		Accept	Reject Help

🔅 Agilent

Convert an Existing Pressure Transfer Method

Convert a	an existing pressure transfe	er Headspace metho	bd		×
	Temperatures	Setpoint		Timing	Setpoint
	✓ Oven Thermostatting	80 °C	(+)	GC Cycle	25 min
	☑ Needle	80 °C		Thermostatting	15 min
	☑ Transfer Line	120 °C		Pressurization	0.2 min
				Withdrawal	0.5 min
				Pre/Post Cryofocusing	0 min
				Inject	0.5 min
	Pressure	Expected Value	Ê	Other Settings	
3	Carrier	28 psi		Shaker	On 🖂
	Vial [15 psi			
			F	Preview Changes Canc	el Help

Convert an Existing Pressure Transfer Method

Confirm method changes			×
Original Method		Modified Method	
Temperature Settings:		Temperature Settings:	
Oven Thermostatting Temperature (°	C):80	Oven Temperature (°C):	80
Needle Temperature (°C):	80	Loop Temperature (°C):	80
Transfer Line Temperature (°C):	120	Transfer Line Temperature (°C):	120
Timing Settings:		Timing Settings:	
GC Cycle Time (min):	25.00	Vial Equilibration (min):	15.00
Thermostatting Time (min):	15.00	Injection Duration (min):	0.50
Pressurization Time (min):	0.20	GC Cycle Time (min):	25.00
Withdrawal Time (min):	0.50		
Pre/Post Cryofocusing Time (min):	0.00	Vial and Loop Settings:	
Injection Duration (min):	0.50	Vial Size:	20
		Vial Shaking:	Level 5, 71 shakes/min
Pressure Settings		with acceleration of 260 cm/s ²	cerei sy ri shakes/min
Carrier (nsi):	28	Fill Mode:	Default
Vial (nsi):	15	Fill Pressure (nsi):	15
viui (psi).	15	Loon Fill Mode:	Default
Advanced Settings:		Loop Fill Houe.	Derbuit
Vial Chaking	01	Connion Sottings	
VIGI SHOKING:	UN	Carrier Settings:	CC controls Cannion
		carrier control mode.	de controis carrier
		Advanced Cettings	
		Auvanceu Seccings.	Cingle Extraction
		Extraction Mode:	Single Extraction
		Vent After Extraction:	UN Default 100 mL/min for 1
		Post Injection Purge:	Default, 100 mL/min for 1
		Acceptable Leak Check:	Default, 0.2mL/min
		Vial Mission	chie
		Vidi Missing;;	Skip
		wrong vial Size:	Continue
		Leak Detected:	Continue
		System Not Ready:	Abort
1		1	
		A t	Deinet
Print		Accept	Reject Help

Print

Head in the Right Direction with Headspace Analysis

DE.4178703704

Reject

Types of Vials

Consumables

High Performance Septa

Max temperature 300 °C Reduce siloxane interferences at high temperature

High power crimpers are recommended for steel caps.

Publication number: 5990-9385EN

High Power Crimper

5190-4067 (crimper with 20 mm jaw set)

DE.4178703704

Standard Crimpers

5190-3189

5040-4669

How Tight is Right?

Common Issues

Carryover/contamination	 Too much sample in the vial Shaking is set too high Sample condensing in the loop Contaminates the probe and loop
Septum or caps blowing off	 Oven temperature is too high Creating too much pressure in the vial
High %RSD	 Vial leaks. Check vial crimping. Sequence actions and logbook. Condensation in the flow path. Check temperatures. Vial equilibration time too short Can run leak check
Sequence makes it through first sample only	•GC cycle time is too short. Check sequence actions and logbook.

Change the Loop Purge Time and Flow Carryover issues

Vial Leaks

Logbook is in the Instrument Control Screen

Starting Parameters

Temperatures	 Oven 20 °C below the BP of the matrix Sample loop Same temp as oven Transfer line Hot enough not to have anything condense Transfer line interface Same as inlet
Times	 Vial equilibration 10 minutes, but use method development Injection duration 0.5 minutes GC cycle time Run time + cool down to ready
Vial and Loop	 Vial size 20 mL Shake vials while in oven 3 (low) Vial fill mode Default 15 psi Loop fill mode Default

Summary

- Stay 10 to 20 °C below the boiling point of the solvent/matrix
- Keep a minimum of 5 mL of headspace in the vial
- Use the Method Development tools
 - Don't forget to turn off the function
- Try to maximize parameters based on compounds with highest K
 - Not every compound responds/reacts the same way
- Use 10 mL vials if appropriate
- Be consistent with crimping vials. Set the crimper properly so that every user is successful.
- When troubleshooting, think about what may or may not be causing the issues you are experiencing.
- Contact technical support

Additional Resources

7697A Headspace Sampler Troubleshooting (PDF) G4556-90018

7697A Headspace Sampler Advanced Operation (PDF) G4556-90016

Search for 7697A Headspace Sampler on Agilent.com

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 option 3, option 3:

Option 1 for GC and GC/MS columns and supplies

Option 2 for LC and LC/MS columns and supplies

Option 3 for sample preparation products, filtration and QuEChERS

Option 4 for spectroscopy supplies

Available in the USA, 8-5 all time zones

 gc-column-support@agilent.com
 GC columns and supplies

 Ic-column-support@agilent.com
 Spp-support@agilent.com

 spectro-supplies-support@agilent.com
 Image: Spectro-supplies - support@agilent.com

