SHIMADZU

Application News

X-ray Analysis

EDXRF Analysis of Sulfur and Other Elements in Oil

The concentrations of sulfur substances in fuel oil, which greatly contribute to air pollution and acid rain, are regulated by law in many countries, and these regulations are becoming stricter with the growing concern about their impact on the environment and the consequences for society.

Here, using the easy-to-operate EDX-720 energy dispersive X-ray fluorescence spectrometer, we determined the limit of detection and limit of

Standard

in Fig. 1.

Oil standards of MBH Analytical Ltd. Sulfur content: 0, 10, 25, 50, 100, 200, 300 ppm

Sample Preparation

Approximately 6 mL of sample was

placed in a container covered with 5 μ m thick polypropylene film, and analyzed. A photograph of the sample is shown

Fig. 1 Photograph of Oil Standard Sample

Calibration Curve

Fig. 2 shows calibration curves of sulfur measured in atmospheres of He and Air, respectively. SK α was used as the analysis line.

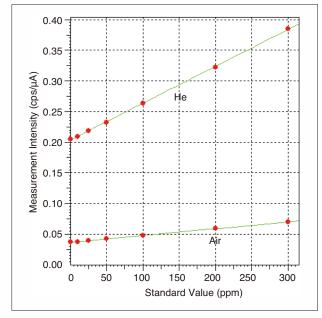


Fig. 2 Calibration Curve of S [He, Air]

quantitation of sulfur.

The energy dispersive X-ray fluorescence spectrometer can be used for simultaneous multi-element analysis of the elements from Na (atomic no. 11) to U (atomic no. 92).

No.X242

Next, we conducted simultaneous analysis of the elements in Conostan[®] S-21, a commercially-available oil standard, and determined the limit of detection for each element detected.

Calibration Curve, Limits of Detection and Limits of Quantitation

The limits of detection and limits of quantitation for sulfur in air and He atmospheres calculated from the calibration curves of Fig. 2 are shown in Table 1.

Table 1	Limits of	Detection a	and Limits of	Quantification for S

Measurement Atmosphere	He	Air
Spectrum	SKα	SKα
Limit of Detection (3 σ)	5.9 ppm	13.0 ppm
Limit of Quantitation (10 σ)	19.9 ppm	43.6 ppm

Results of Qualitative Analysis

Fig. 3 shows the qualitative profile for the 200 ppm sample. The analytical conditions are shown in Table 2.

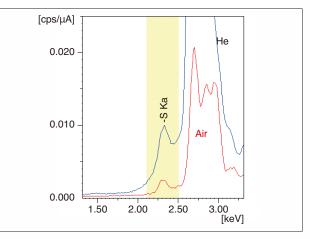


Fig. 3 Profile of S (200 ppm)

Table 2 Analytical Conditions

Instrument	: EDX-720
X-ray Tube	: Rh target
Filter	: Without
Voltage-Current	: 15 kV- (Auto) μA
Atmosphere	: He, Air
Measurement Diameter	: 10 mm <i>\varphi</i>
Measurement Time	: 300 sec
Dead time	: Max 40 %

Quantitative Analysis of Conostan[®] S-21

We conducted qualitative analysis of the Conostan[®] S-21 standard sample, and then calculated the limit of detection for each element.

Sample

Conostan® S-21, 100 ppm

Elements

Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Pb

Sample Preparation

Approximately 6 mL of sample was placed in a container covered with 5-µm thick polypropylene film, and analyzed. A photograph of the sample is shown in Fig. 4.

Fig. 4 Conostan® S-21, 100ppm

Qualitative Profile

The results of qualitative analysis of Conostan $^{\mbox{\tiny ®}}$ S-21 are shown in Fig. 5.

Table 3 Limits of Detection

Element	Analysis Line	Detection Limit (ppm)	Primary Filter	Atmosphere
13 AI	Κα	31.0	—	He
14 Si	Κα	19.0	—	He
15 P	Κα	12.8	—	He
20Ca	Κα	2.9	#1	He
22Ti	Κα	1.9	#1	Air
23 V	Κα	2.1	#1	Air
24Cr	Κα	2.0	#1	Air
25Mn	Κα	3.3	#2	Air
26 Fe	Κα	2.4	#2	Air
28Ni	Κα	2.2	#3	Air
29Cu	Κα	1.6	#3	Air
30Zn	Κα	1.3	#3	Air
42 Mo	Κα	1.9	#3	Air
47Ag	Κα	1.8	#4	Air
48Cd	Κα	2.3	#4	Air
50Sn	Κα	3.6	#4	Air
82Pb	Lα	1.2	#3	Air

* Calculation Expression for Limit of Detection

C: Standard value (ppm)

Inet: Net intensity (Counts)

Iback: Background intensity (Counts)

Limits of Detection

The limits of detection for the respective elements calculated from the qualitative analysis results are shown in Table 3. It was understood from these results that detection of the heavy elements is possible at the ppm level in Air atomosphere.

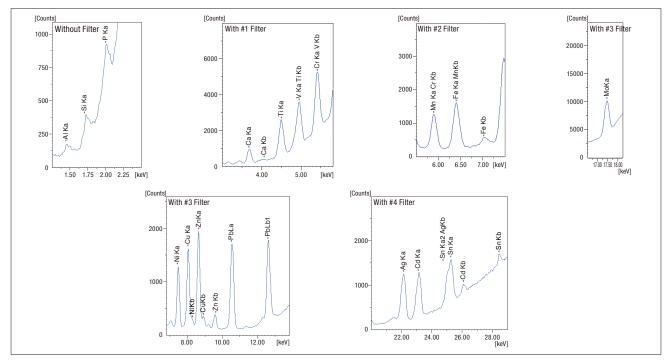


Fig. 5 Qualitative Analysis of Standard Oil Sample, Conostan® S-21

Table 4 Analytical Conditions (Qualitative Analysis)

Instrument : EDX-720	Voltage-Current	: Al, Si, P, Ca, Ti, V, Cr : 15kV-(Auto) µA
X-ray Tube : Rh target		Mn, Fe, Mo, Ni, Cu, Zn, Pb, Ag, Cd, Sn : 50kV-(Auto) µA
Filter : Without [Al, Si, P], Filter #1 [Ca, Ti, V, Cr], Filter #2 [Mn, Fe]	Atmosphere	: He, Air
Filter #3 [Mo, Ni, Cu, Zn, Pb], Filter #4 [Ag, Cd, Sn]	Measurement Diameter	$:10 \text{ mm } \varphi$
Dead time : Max 40 %	Measurement Time	: Each 300 sec

 SHIMADZU CORPORATION. International Marketing Division

 3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan
 Phone: 81(3)3219-5641
 Fax. 81(3)3219-5710