

A Semi-Automated Method for Sequencing Oligonucleotides using ISD and Pseudo-MS³ on a MALDI-Ion Trap-TOF Mass Spectrometer

IMSC 2012 PWe-147

Matthew E. Openshaw¹, Omar Belgacem¹ and Marco Smith² ¹Shimadzu, Manchester, UK; ²GlaxoSmithKline, Stevenage, UK

PO-CON1245E

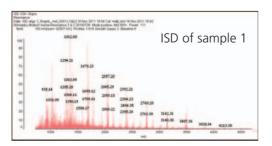
Introduction

Quality Control (QC) analysis of oligonucleotides is commonly performed using MALDI-TOF. Using linear mode analysis, confirmation of the expected mass can be achieved with modest mass accuracy (typically 1-2 Da). An advantage of using MALDI-TOF technology for the analysis of oligonucleotides is the ability to perform in-source decay (ISD) sequencing, if required.

For *unmodified* RNA oligonucleotides, the mass accuracy achieved during ISD analyses is often sufficient to confirm the sequence. However, oligonucleotides designed for use as therapeutics often contain modifications to improve stability and resistance to degradation. In the case of 2' -O-methyl phosphorothioate-modified RNA

Experimental

Samples were prepared in deionised water and were desalted (x2) using Dowex 50WX8-200 ion-exchange resin beads (Sigma). Samples were prepared using 3-hydroxypicolinic acid (HPA) (Fluka) and ammonium citrate (Fluka). Sample solution/Dowex resin/HPA matrix/ammonium citrate were mixed in a microcentrifuge tube and the resin beads allowed to settle. An aliquot of this solution was deposited onto a stainless steel MALDI target and dried in a vacuum drier box. oligonucleotides, the mass difference between residues can be as small as 1 Da (e.g. modified C = 336 Da, modified U = 335 Da). In such cases, the lower mass accuracy of linear mode ISD may not be sufficient for unambiguous sequence determination.


Here, we describe an approach using ISD performed on a MALDI-Ion Trap-TOF mass spectrometer. The configuration of this instrument is such that high mass accuracy and monoisotopic resolution are achieved for ISD fragments. In a further development of this application, we applied software originally developed for copolymer analysis, for the semi-automated sequencing of the modified oligonucleotides using MALDI-ISD data.

Samples were analysed on an AXIMA *Resonance* MALDI-Ion Trap-TOF mass spectrometer (Shimadzu, UK). For ISD experiments, the laser power was increased by approx. 10% compared with that used for MS. Samples were analysed in Mid 850 mode (approx. trapped mass range = \sim 850 – 3500 *m/z*). 500-800 profiles were acquired (2 shots/profile).

MALDI-ISD data were interpreted in a semi-automated manner using *Polymer Analysis* software (Shimadzu). A tolerance of 200 mDa was used when matching candidate oligonucleotide compositions to the experimental data.

Results

Three 2'-O-methyl phosphorothioate-modifed (2'-OMe) oligonucleotides samples (labelled 1, 2 and 3) were used to test the proposed workflow. The structures of unmodified and 2'-OMe-modified oligonucleotides differ from

unmodified oligonucleotides in that: (i) one of the non-bridging oxygens in the backbone phosphate is replaced by sulphur and; (ii) the -OH in the 2' position of the nucleoside is replaced with -OCH₃.

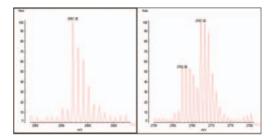


Fig. 1 (left) MALDI-Ion Trap-TOF-ISD spectrum obtained for sample 1 (5 mg/mL) and; (right) expanded views showing resolution of selected ISD fragments

SHIMADZU Excellence in Science A Semi-Automated Method for Sequencing Oligonucleotides using ISD and Pseudo-MS³ on a MALDI-Ion Trap-TOF Mass Spectrometer

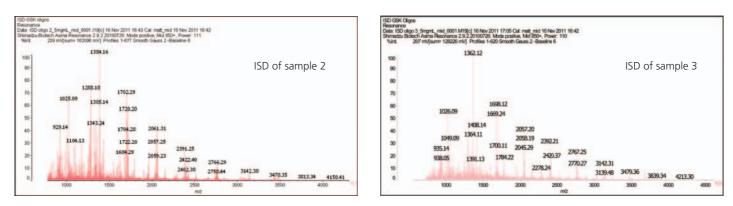


Fig. 2 MALDI-Ion Trap-TOF-ISD spectra obtained for: (left) sample 2 (5 mg/mL) and; (right) sample 3 (5 mg/mL)

Dafaset Trace Sample 1:ISD oligo 1_5mgmL_mix + 17 L13 +	Tolerance: 200 + n	nDa 💌	Distribu	tions Copo	lymon
Masses Graph style			Theo	relical resolution	-
Monoisotopic 💌 🚺 Stack Dve	day		8000	Use this valu	ю Г
Unit ID Name			Low range	High rang-A	
meth-Undine C10H1204N2			4	5	n
meth-Cytidine C10H1303N3			1	2	
meth-Guano C11H1303N5			0	1	
meth-Adeno C11H1302N5			0	1	
phosphoroth P035H Fed DH2			6	6	
4					
Include un-matched theoretical peaks	Generate	Theoretical	dM	Score	
		Theoretical			1
		Theoretical 1810.0633			1
Dishibution ID	Fomulo		dM	Score	1
Distribution ID meth Undere 4 meth Cylidine phosphosofhoate6 End Proton meth Undere 4 meth Cylidine 2 phosphosthoate6 End Proton meth Undere Smith Cylidine phosphosthoate6 End Proton	Fomula C50 H70 N11 038 P5 56 D60 H83 N14 041 P5 56 D60 H82 N13 042 P5 56	1810.0633 2033.1590 2034.1430	dM -0.1465 -0.0476 -0.0475	Score 0.556346 0.241203 0.281025	
Distribution ID meth Undered meth Cylidine phosphosofhoate8 End Proton meth Undered meth Cylidine phosphosofhoate8 End Proton meth Undered meth-Cylidine meth-Adenoise phosphorothioate meth Undered meth-Cylidine meth-Adenoise phosphorothioate	Fomula C50 H70 N11 038 P6 56 C60 H83 N14 041 P6 56 C60 H83 N14 041 P6 56 C61 H83 N16 040 P6 56 6 End	1810.0633 2033.1590 2034.1430 2057.1702	dM 0.1465 -0.0476 -0.0475 -0.0273	Scote 0.556346 0.241203 0.281025 0.978860	
Distribution ID weth Likeline4 meth-Optidine phosphore/thoute6 End Photon meth-Optidine4 meth-Optidine2 phosphore/thoute6 End Photon meth-Optidine4 phosphore/thoute6 End Photon meth-Optidine4 meth-Optidine meth-Aderocine phosphore/thoute meth-Optidine4 meth-Optidine meth-Optioneant/option/thoute6	Formulas C50 H70 N11 038 P6 56 C60 H83 N14 041 P6 56 C60 H82 N13 042 P6 56 6 End C61 H83 N16 040 P6 56 6 End C61 H83 N16 044 P6 56	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652	dM 0.1465 -0.0476 -0.0475 -0.0273 0.0001	Score 0.556346 0.241203 0.281025 0.978860 0.422912	
Dehbuten ID weth UdaceA meth-Cyldree glosphouthoate6 E nd Proten meth-UdaceA meth-Cyldree glosphouthoate6 E nd Proten meth-UdaceA meth-Cyldree glosphouthoate6 E nd Proten meth-UdaceA meth-Cyldree meth-Guarosce Prophoethoate meth-UdaceA meth-Cyldree meth-Guarosce Prophoethoate meth-UdaceA meth-Cyldree meth-Guarosce Prophoethoate meth-UdaceA meth-Cyldree peth-Guarosce peth-CyldreeA meth-UdaceA meth-Cyldree peth-Guarosce peth-CyldreeA meth-CyldreeA meth-CyldreeA peth-CyldreeA meth-Guarosce peth-CyldreeA meth-CyldreeA meth-CyldreeA peth-CyldreeA meth-Guarosce peth-CyldreeA meth-CyldreeA meth	Formula CS0 H/30 N/1 0/38 P6 S6 C80 H/30 N/1 0/38 P6 S6 C80 H/33 N/1 0/41 P6 S6 6 End	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2387	dM 0.1465 -0.0476 -0.0475 -0.0273 -0.0001 -0.0055	Score 0.556346 0.241203 0.281025 0.978860 0.422912 0.517921	
Distribution ID andhi Ushoredi methi Cylidine ghosphosofhosabrid E nd Pioten methi Ushoredi methi Cylidineg ghosphosofhosabrid E nd Pioten methi Ushoredi methi Cylidineg phosphosofhosabrid E nd Pioten methi Ushoredi methi Cylidine getti Cylinacorea phosphosofhosabri methi Ushoredi methi Cylidine getti Cylinacorea phosphosofhosabri Multi Cylinacorea phosphosofhosabri Cylinacorea phosphosofhosabri Multi Cylinacorea phosphosphosphosphosphosphosphosphosphos	Formula C50 H70 V11 038 P6 56 C50 H83 V14 041 P6 56 C50 H83 V14 041 P6 56 C50 H83 V14 041 P6 56 6 End. C51 H83 V16 040 P6 56 C70 H55 V16 045 P6 55 e6 End. C71 H56 V19 043 P6 55	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2387 2280.2659	dM 0.1465 0.0475 0.0475 0.0273 0.0001 0.0055 0.0040	Scote 0 556346 0.241203 0.281025 0.978860 0.422912 0.517521 0.963951	1
Dehbution ID with Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree neth-Cyldree neth-Cyldree interphout/hoath meth-Ublace's neth-Cyldree neth-Cyldree out-Cyldreevine's platphout/hoath meth-Ublace's neth-Cyldree and hoatons/hoath6 Cnd Platen meth-Ublace's neth-Cyldree 2 neth-Admosine phosphout/hoath6 meth-Ublace's neth-Cyldree and hoatonine phosphout/hoath6 meth-Ublace's neth-Cyldree and hoatonine phosphout/hoath6	Fomulas C50 H70 N11 038 P6 56 D50 H63 N14 041 P6 556 D50 H62 N14 041 P6 556 D50 H62 N14 041 P6 556 6 End	1810.0633 2033.1590 2034.1430 2057.1702 2057.1702 2257.2387 2280.2659 2281.2500	dM 0.1465 -0.0476 -0.0475 -0.0273 0.0001 -0.0055 -0.0040 0.0478	Scote 0 956346 0.241203 0.281025 0.978860 0.422912 0.517921 0.963951 0.939620	
Distribution ID andh Uskevel meth-Cyclene phosphosothoatelis End Photon meth-Uskevel meth-Cyclene phosphosothoatelis End Photon meth-Uskevel meth-Cyclene phosphosothoatelis End Photon meth-Uskevel meth-Cyclene phosphosothoatelis meth-Uskevel meth-Cyclene phosphosothoatelis meth-Cyclene phosphosp	Formula C50 H 70 N11 038 P6 56 D50 H83 N14 041 P6 56 D50 H83 N14 041 P6 56 6 End D60 H83 N14 041 P6 56 6 End D61 H83 N15 041 P6 56 6 End D61 H83 N15 041 P6 56 6 End C71 H83 N15 041 P6 55 6 End C71 H95 N15 041 P6 55 6 End C71 H95 N15 041 P6 55 6 End C71 H95 N15 041 P6 55	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2387 2280.2859 2281.2500 2296.2609	eM 0.1465 0.0476 0.0475 0.0073 0.0001 0.0055 0.0055 0.0055 0.0040 0.0478 0.0070	Scote 0 556346 0.241203 0.281025 0.978860 0.422912 0.517521 0.963951 0.939620 0.943123	1
Dehbution ID with Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree glosphout/hoath5 End Platen meth-Ublace's neth-Cyldree neth-Cyldree neth-Cyldree interphout/hoath meth-Ublace's neth-Cyldree neth-Cyldree out-Cyldreevine's platphout/hoath meth-Ublace's neth-Cyldree and hoatons/hoath6 Cnd Platen meth-Ublace's neth-Cyldree 2 neth-Admosine phosphout/hoath6 meth-Ublace's neth-Cyldree and hoatonine phosphout/hoath6 meth-Ublace's neth-Cyldree and hoatonine phosphout/hoath6	Formula C59 H101911 038P5 56 C61 H101110 041P5 55 C71 H1051110 041P5 55 6Erd. C71 H1051110 044P5 55 6Erd. C71 H1051110 044P5 55 6Erd. C71 H1051110 044P5 55	1810.0633 2033.1590 2034.1430 2057.1702 2057.1702 2257.2387 2280.2659 2281.2500	dM 0.1465 -0.0476 -0.0475 -0.0273 0.0001 -0.0055 -0.0040 0.0478	Scote 0 956346 0.241203 0.281025 0.978860 0.422912 0.517921 0.963951 0.939620	1
Dehbution ID with Ublace's neth-Cyldner ghosphos/thosete E nd Proten meth-Ublace's neth-Cyldner ghosphos/thosete E nd Proten meth-Ublace's neth-Cyldner ghosphos/thosete E nd Proten meth-Ublace's neth-Cyldner neth-Cyldnerouris phosphorothoset meth-Ublace's neth-Cyldner neth-Cylanovier phosphorothoset meth-Ublace's neth-Cyldnerouris Cylanovier phosphorothoset meth-Ublace's neth-Cyldnerouris Cyldnerouris phosphorothoset	Formals C59 H-70 PM 10 33P 55 6 C80 H-70 PM 10 34P 55 6 C81 H-70 PM 10 34P 55 6 C91 H-70 PM 10 34P 55 6	1810.0633 2033.1590 2034.1430 2057.1302 2057.2307 2200.2659 2281.2609 2295.2609 2297.2449	dM 0.1465 0.0476 0.0475 0.0273 0.0001 0.0055 0.00478 0.0070 0.0070 0.0075	Score 0.565346 0.241203 0.281025 0.976860 0.422912 0.517921 0.959520 0.943123 0.939620 0.943123 0.9392362	1
Dehhulon ID amit Udace3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udace3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udare3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udare3 meh-Çadare meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare plosphos/hoatki C nd Ploten meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Quarosine plosphos/ho	Formais 250 H/D NT1 03976 56 620 H/D NT1 03976 56 620 H/D NT1 040 PF 55 620 H/D NT1 040 PF 55 62 H/D NT1 040 PF 55 62 H/D NT1 040 PF 55 64 frag 65 H/D NT1 040 PF 55 65 H/D NT1 040 PF 55 65 H/D C Y1 H/D NT1 040 PF 55 65 H/D C Y1 H/D NT1 040 PF 55 65 H/D C Y1 H/D NT1 040 PF 55 65 H/D C Y1 H/D NT1 040 PF 55 66 H/D C Y1 H/D NT1 040 PF 55 66 H/D C Y1 H/D NT1 040 PF 55 66 H/D C Y1 H/D NT1 040 PF 55 66 H/D C Y1 H/D NT1 040 PF 55 66 H/D C Y1 H/D NT1 040 PF 55 67 H/D NT1 040 PF 55	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2387 2280.2659 2281.2500 2295.2649 2297.2449 2330.2721 2504.3562 250.3406	284 0.1425 0.0476 0.0476 0.0475 0.0001 0.0055 0.00478 0.0478 0.0478 0.0478 0.0070 0.0005 0.0759 0.10759 0.10759 0.10759	Scote 0.556346 0.241203 0.281025 0.378860 0.422912 0.517921 0.963951 0.939620 0.943123 0.932362 0.457832 0.577824	1
Distribution ID and Universit meth-Cylidiane glocophonothosateli E nd Protein meth-Universit meth-Cylidiane glocophonothosateli E nd Protein meth-Universit meth-Cylidiane glocophonothosateli E nd Protein meth-Universit meth-Cylidiane and Ananciene phosphonothosate meth-Universit meth-Cylidiane meth-Ananciene phosphonothosate meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Ananciene meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Ananciene meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Ananciene meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Ananciene meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Anderoniane meth-Universit meth-Cylidiane meth-Cylianosizem the Anal-Anderoniane meth-Universite meth-Cylianosizem the Anal-Anderoniane meth-Cylianosizem the Anal-Anal-Anal-Anal-Anal-Anal-Anal-Anal-	Formals 250 H70 N11 039195 56 C80 H87 N1 04 D1 PS 55 C80 H87 N1 04 D1 PS 55 C80 H87 N1 04 D1 PS 56 C81 H87 N1 04 D1 PS 56 C91 H57 H15 04 D1 PS 56 H56 L1 C1 T1 H57 H150 D1 PS 56 H56 L1 C1 T1 H57 H150 D1 PS 56 H56 L1 C1 D1 H150 H170 D1 PS 105 H56 L1 C1 D1 H150 H170 D1 PS 105 H56 H10 C1 D1 PS 105 H56 H10 C	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2807 2280.2859 2281.2800 2296.2609 2297.2449 2330.2721 2804.3656 2500.3406 2540.3466	dM d1465 d.0476 d.0476 d.0476 d.0475 d.0273 d.0055 d.0040 0.0478 0.0070 0.0075 0.0759 0.10759 0.10759 0.10759 0.1048 0.0770	Scote 0.556346 0.241203 0.878860 0.422912 0.517921 0.963951 0.939620 0.943123 0.939620 0.457832 0.508387 0.877284 0.815718	4
Dehhulon ID amit Udace3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udace3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udare3 meh-Çadare plosphos/hoatkis E nd Ploten meti Udare3 meh-Çadare meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare plosphos/hoatki C nd Ploten meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meti Udare4 meh-Çadare3 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Udare5 meh-Quarosine plosphos/hoatki meh-Quarosine plosphos/ho	Formula 250 H/D NT1 03976 S6 620 H/D NT1 03976 S6 620 H/D NT1 040 HP S5 620 H/D NT1 040 HP S5 620 H/D NT1 040 HP S5 62 H/D NT1 040 HP S5 64 H/D NT1 040 HP S5 65 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 66 H/D C 71 H/S NT1 040 HP S5 67 H/D N/D 104 HP S5 67 HP S5 67 H/D N/D 104 HP S5 67 HP S5 67 HP S5 67 HP S5 68 HP A 67 HP S5 67 HP	1810.0633 2033.1590 2034.1430 2057.1702 2073.1652 2257.2387 2280.2659 2281.2500 2295.2649 2297.2449 2330.2721 2504.3562 250.3406	284 0.1425 0.0476 0.0476 0.0475 0.0001 0.0055 0.00478 0.0478 0.0478 0.0478 0.0070 0.0005 0.0759 0.10759 0.10759 0.10759	Scote 0.556346 0.241203 0.281025 0.378860 0.422912 0.517921 0.963951 0.939620 0.943123 0.932362 0.457832 0.577824	6

The *Polymer Analysis* software (*left*) was originally developed for the analysis of copolymer samples. The user defines the elemental composition of the individual components and specifies the minimum and maximum permitted number of each to be used in the calculations (see the 'Low range' and 'High range' fields). For example, in the case of the ionising proton, the min. and max. limits were set to 1 (i.e. a maximum of 1 proton must be present in each calculated composition). The software then calculates all possible combinations of the various components (within the specified min./max.limits) and compares the results against the experimentally obtained spectrum. If a peak is detected in the mass spectrum, within the user-defined tolerance, the match is listed in the Polymer Analysis software and the mass error is shown. In addition, a score is calculated based on the isotopic pattern fit relative to the theoretical pattern (see Fig. 4 below).

Fig. 3 Polymer Analysis software screenshot showing the Copolymers analysis mode which was used in this work.

As oligonucleotides are composed of only 4 residues, we proposed that the *Polymer Analysis* software may facilitate sequencing of this class of compound. The composition of the 4 residues (A, C, G and U), the adduct (H^+), the modified-phosphorothioate backbone and the end groups were all specified. Sequencing was performed in a stepwise manner: initially, limits for the 4 residues were relaxed (0 (min.) to 4 (max.)). If a single composition was detected for one of the main fragments in the lower *m*/*z* region (1000-1400 *m*/*z*), this was taken as the starting composition. [It should be noted that for this first terminal fragment, the composition is proposed but the sequence

order is unknown]. Subsequently, the low limits for the various residues were set to match the composition of the proposed fragment while the high limit for all residues was increased by 1. Similarly, the low- and high-limits for the number of phosphorothioate groups was set to n+1, where n = the number of residues from the initial proposed composition. In this way, the sequence of the oligonucleotide could be extended 1 residue at a time. Finally, the sequence order of the proposed 3'- and 5'-terminal fragments was determined using pseudo-MS³ (see Fig. 5).

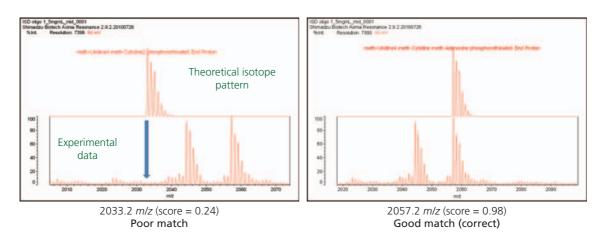
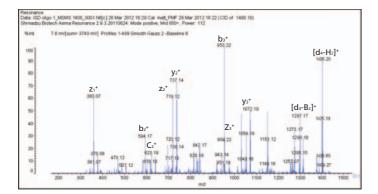



Fig. 4 (right): Polymer Analysis software results obtained during semi-automated oligonucleotide sequencing. The upper trace shows the theoretical isotope pattern for the selected composition and the lower trace shows the experimental data.

In Fig. 3 (Polymer Analysis software screenshot), from the iteration shown, 2 compositions are proposed which are valid based on the ratio of 'number of residues' and 'number of phosphorothioate residues' (# residues = # phos groups). Selecting the proposed compositions allows comparison of the theoretical isotope pattern with the experimental data obtained (see Fig. 4). Using the *Polymer Analysis* score (based on isotopic pattern fit), the incorrect composition (2033.2 *m/z* (Fig. 4 (a))) can be quickly eliminated.

The full oligonucleotide sequence was determined by combining sequence information obtained from both the 5'- and 3'-termini. For sample 2, it was not possible to confirm the central 2 residues (shown as XX). Using the intact molecular weight for the sample (determined by

linear mode MALDI-MS, not shown) and the determined 5'and 3'-sequences, the missing residues were consistent with either CC, [CU] or UU. A higher mass accuracy measurement of the precursor would help eliminate such ambiguities.

For all the samples, the composition of the terminal sequences were proposed in the first iteration but the sequence order was not known. The termini sequences (typically approx. 4 residues) can be confirmed by performing pseudo-MS³ (i.e. MS/MS of the ISD fragment .See Fig. 5). The oligonucleotide samples used in this work were synthetic products and the theoretical sequence was used to facilitate interpretation of the MS/MS spectra for the terminal residues.

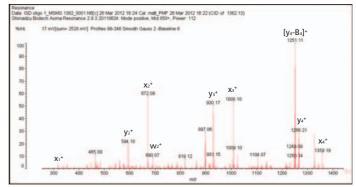


Fig. 5: Pseudo-MS³ (i.e. MS/MS of ISD fragments) of terminal fragments of sample 1:
(a) 5'-terminal fragment (1408.1 *m/z*; [UCAA...]) and;
(b) 3'-terminal fragment (1362.1 *m/z*; [...UUCU])

Table 1 shows the sequences determined for samples 1, 2 and 3. The termini sequences (underlined in table 1) were confirmed using the theoretical oligonucleotide sequence and the MS/MS data.

Sample	Sequence obtained	# Correct residues (% correct)
1	<u>UCAA</u> GGAAGAUGGCAU <u>UUCU</u>	20/20 (100 %)
2	<u>GGCC</u> AAACCXXGGCUU <u>UCCA</u>	16/20 (80 %)
3	<u>UCAA</u> GGGAAGAUGGCAU <u>UUCU</u>	21/21 (100 %)

Table 1: Summary of sequencing results obtained for oligonucleotide samples 1, 2 and 3. For sample 2, the residues shown as XX could not be determined as the higher mass ISD fragment ions were too low abundance.

Note: sequence confirmation of terminal residues (underlined) was performed using the theoretical oligonucleotide sequence.

Conclusion

🕀 SHIMADZU

- The advantages of the MALDI-ion trap-TOF compared with a regular linear mode MALDI-TOF for in-source decay include the high mass accuracy and monoisotopic resolution obtained for the ISD fragments and the ability to perform high quality pseudo-MS³ for terminal sequence confirmation.
- However, the higher mass ISD fragments towards the middle of the sequence have lower abundance which limits the size of the oligonucleotide which can be fully sequenced (approx. 20-mer). Full sequence coverage can be determined by combining sequences from both termini. In the case of sample 2, portions of the sequence were determined incorrectly.
- The *Polymer Analysis* software was shown to be applicable for the semi-automated sequencing of oligonucleotides using MALDI-ion trap-TOF ISD data, although further optimisation is still required. As shown, this software can be used in an iterative approach to determine the sequence of one residue at a time. However, manual verification of the correct residues is still required although this could be automated in the future using simple rules to exclude sequences which are not possible.

First Edition: September, 2012

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

© Shimadzu Corporation, 2012