

Determination of Selected Polychlorinated Biphenyls in Soil Using a OuEChERS-based Method and Gas Chromatography Tandem Mass Spectrometry

Application Note

Environmental

Authors
Zeying He, Lu Wang, Yi Peng,
Ming Luo, and Xiaowei Liu
Agro-Environmental Protection
Institute, Ministry of Agriculture,
Tianjin 300191, P.R. China
Wenwen Wang
Agilent Technologies (China) Company,
Ltd., Beijing 100102, China

Abstract

Soil is an important object in pollution assessment, environmental behavior, and toxicity studies for polychlorinated biphenyls (PCBs). Accelerated solvent extraction and solid phase extraction are generally required for extraction and cleanup of PCBs in soil. These are tedious and time-consuming procedures. In this research, a modified OuEChERS procedure combined with gas chromatography-triple quadrupole mass spectrometry was developed for the determination of 20 selected PCB congeners in soil. The average recoveries from spiked soils ranged between 70 and 120%, with satisfactory relative standard deviations for all the PCBs. The limits of quantitation (LOOs) were in the range of 0.01 and $0.05 \mathrm{ng} / \mathrm{g}$. The method was successfully applied to the analysis of 66 agricultural soils. The procedure proved to be simple, sensitive, efficient, and environmentally friendly.

Introduction

Polychlorinated biphenyls (PCBs) are one of the most widespread and persistent pollutants in the world [1]. There are 209 individual PCB components, known as congeners, and, because of their persistance and hydrophobicity, they accumulate in soils where they are likely to be retained for many years. Consequently, soils are a primary reservoir for PCBs [2]. Because of their global contamination and adverse effects on environmental and human health [3], the production of PCBs has been banned worldwide since the early 1970s. Although PCBs have been banned for decades, they are still found in soils, surface waters, sediments, and air, since they are transported far from their sources [4]. Due to the increasing concern about chemical contamination of soil, there is growing interest in the scientific community and international agencies for soil pollution monitoring and assessment. To study environmental behavior in soil, it is critical to develop simple, sensitive, and reliable analytical methods.

The Quick, Easy, Cheap, Effective, Rugged, and Safe (OuEChERS) method, originally developed for extracting pesticides in fruit and vegetables in 2003 by Anastassiades et al. [5], has extended its application to many other matrices and pollutants. The QuEChERS multiresidue procedure omits or replaces many complicated analytical steps commonly used in traditional methods, making the sample preparation simple and efficient.

The aim of this research was to develop a simple, robust, and effective multiresidue method based on the OuEChERS procedure for the determination of 20 selected PCBs in soil. Different extract solvents, extract times, and cleanup adsorbents were tested and optimized. The optimum method provided a new chemical analysis method for PCB monitoring and environmental behavior studies in soil. This application note describes a recently published study of selected polychlorinated biphenyls in soil and earthworm using a QuEChERS-based method and gas chromatography tandem mass spectrometry [6]. It is a rapid multiresidue method based on a OuEChERS sample preparation, combined with GC/MS/MS detection, aiming to determine selected PCBs in soil.

Reagents and standards

Acetonitrile, hexane, and cyclohexane were HPLC grade. Water was purified by a Milli- 0 system. PCB congeners (IUPAC numbers $28,52,77,91,95,101,105,114,118$, $136,138,149,153,157,167,169,176,180,183$, and 189 in isooctane all at $100 \mu \mathrm{~g} / \mathrm{mL}$), surrogate (${ }^{13} \mathrm{C}_{12}$-PCB 52, $40 \mu \mathrm{~g} / \mathrm{mL}$ in isooctane), and internal standard (PCB 202, $100 \mathrm{mg} / \mathrm{L}$ in isooctane) were purchased from Accustandard (New Haven, CT, USA). Stock standard solution (20 PCB mixtures) and surrogate solution of $1 \mu \mathrm{~g} / \mathrm{mL}$ were prepared in cyclohexane, respectively. A $0.1 \mu \mathrm{~g} / \mathrm{mL}$ internal standard solution was prepared in cyclohexane. Ceramic homogenizers and dispersive solid phase extraction adsorbent (PSA, C18, MgSO_{4}) were purchased from Agilent Technologies (CA, USA). Certified reference material of seven PCBs in soil was obtained from Agro-Environmental Quality Supervision \& Testing Center, MOA (Tianjin, China).

Instrument conditions

GC Conditions

GC system	Agilent 7890A, coupled with an Agilent 7693 autosampler
Column	Agilent HP-5 MS UI ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$) (p / n 19091S-433 UI)
Oven temperature	$60^{\circ} \mathrm{C}$ hold 1 minute, at $40^{\circ} \mathrm{C} / \mathrm{min}$ to $120^{\circ} \mathrm{C}$, at $5^{\circ} \mathrm{C} / \mathrm{min}$ to $275^{\circ} \mathrm{C}$
Carrier gas	Helium
Flow rate	$1.0 \mathrm{~mL} / \mathrm{min}$
Injection port temperature	$280{ }^{\circ} \mathrm{C}$
Injection volume	$1.0 \mu \mathrm{~L}$
Injection mode	Splitless, purge on after 1.5 minutes
MS Conditions	
MS system	Agilent 7000C Triple Quadrupole GC/MS System
Ion source	El
Ionization voltage	70 eV
Ion source temperature	$280{ }^{\circ} \mathrm{C}$
Quadrupole temperature	$\begin{aligned} & 01150^{\circ} \mathrm{C} \\ & 02150^{\circ} \mathrm{C} \end{aligned}$
Interface temperature	$280{ }^{\circ} \mathrm{C}$
Solvent delay	10.0 minutes

Table 1 gives the retention time and MRM transition parameters for the selected PCB congeners.

Sample preparation

Soil used in the recovery experiment was collected from an agriculture field in Tianjin, China. The soil was air-dried at room temperature, ground, and sieved through a $2-\mathrm{mm}$ mesh. The physicochemical properties of the soil were as follows: pH 7.53, 1.53 \% organic matter, 16.72 \% clay, 43.25 \% sand, and 39.71 \% silt.

Table 1. Retention Time and MRM Transition Parameters for the Selected PCB Congeners

Compound	$\mathbf{t}_{\mathbf{R}}(\mathbf{m i n})$	MRM1	CE	MRM2	CE	MRM3	CE
PCB28	17.75	$256 \rightarrow 186$	25	$258 \rightarrow 188$	25	$258 \rightarrow 186$	25
${ }^{13}$ C $_{12}$-PCB52a	19.05	$232 \rightarrow 162$	40	$232 \rightarrow 197$	30	$304 \rightarrow 269$	15
PCB52	19.06	$290 \rightarrow 220$	25	$292 \rightarrow 222$	25	$292 \rightarrow 220$	25
PCB95	21.46	$326 \rightarrow 256$	25	$328 \rightarrow 256$	30	$326 \rightarrow 291$	15
PCB91	21.69	$326 \rightarrow 256$	25	$328 \rightarrow 256$	25	$326 \rightarrow 291$	15
PCB101	22.31	$326 \rightarrow 256$	30	$328 \rightarrow 256$	30	$326 \rightarrow 254$	30
PCB136	23.53	$360 \rightarrow 290$	30	$362 \rightarrow 290$	30	$360 \rightarrow 288$	30
PCB77	23.63	$290 \rightarrow 220$	25	$292 \rightarrow 222$	25	$220 \rightarrow 150$	35
PCB149	24.51	$360 \rightarrow 290$	30	$362 \rightarrow 290$	30	$360 \rightarrow 325$	15
PCB118	24.57	$326 \rightarrow 256$	30	$328 \rightarrow 256$	30	$326 \rightarrow 254$	30
PCB114	24.97	$326 \rightarrow 256$	25	$328 \rightarrow 256$	25	$326 \rightarrow 254$	25
PCB153	25.39	$360 \rightarrow 290$	25	$362 \rightarrow 290$	25	$360 \rightarrow 288$	25
PCB105	25.52	$326 \rightarrow 256$	30	$328 \rightarrow 256$	30	$326 \rightarrow 254$	30
PCB176	26.16	$394 \rightarrow 324$	25	$396 \rightarrow 324$	25	$396 \rightarrow 326$	25
PCB138	26.37	$360 \rightarrow 290$	30	$360 \rightarrow 325$	15	$362 \rightarrow 290$	30
PCB183	27.14	$394 \rightarrow 324$	30	$396 \rightarrow 326$	30	$396 \rightarrow 324$	30
PCB167	27.36	$360 \rightarrow 290$	25	$362 \rightarrow 290$	25	$360 \rightarrow 288$	30
PCB202	28.10	$428 \rightarrow 358$	30	$430 \rightarrow 360$	30	$430 \rightarrow 358$	30
PCB157	28.35	$360 \rightarrow 290$	30	$362 \rightarrow 290$	30	$360 \rightarrow 288$	30
PCB180	28.74	$394 \rightarrow 324$	30	$394 \rightarrow 359$	15	$396 \rightarrow 326$	30
PCB169	29.45	$360 \rightarrow 290$	30	$362 \rightarrow 290$	30	$360 \rightarrow 288$	30
PCB189	30.72	$396 \rightarrow 324$	30	$396 \rightarrow 326$	30	$394 \rightarrow 324$	30

${ }^{\text {a }}$ surrogate standard
${ }^{\mathrm{b}}$ internal standard

Optimized extraction and cleanup procedure

*The Dispersive solid phase extraction adsorbents kits for soil ($\mathrm{p} / \mathrm{n} 5982-5156$)

Results and Discussion

Method validation

The analytical parameters including linearity, limit of quantitation (LOO), repeatability, and recoveries were studied under the optimized extraction and cleanup conditions. To determine the method accuracy, a recovery study was carried out, comparing the concentration of each PCB measured by performing the complete procedure with the known concentration fortified to blank soil samples at 0.1, 1 , and $10 \mathrm{ng} / \mathrm{g}$ in replicates $(\mathrm{n}=5)$. Blank soil samples were preanalyzed to verify the absence of selected PCBs. The matrix-dependent LOO of the method were determined using spiked blank samples, and defined as the lowest fortified concentrations that produce a signal-to-noise (S/N) ratio above 10. Calibration curves were calculated with standards in solvent at concentrations of $0.1,1,5,10$, and $50 \mathrm{ng} / \mathrm{mL}$ for each PCB.

Good linearity was obtained for all the PCB congeners within the concentration range of 0.1 to $50 \mathrm{ng} / \mathrm{mL}$, with a coefficient of detection $\left(R^{2}\right)$ higher than 0.999 . Table 2 shows the results of the recovery experiments for soil under optimized extraction and cleanup conditions.

Table 2. LOOs, Recoveries, and Relative Standard Deviation (RSDs) of Selected PCBs for Soil Spiked at $0.1 \mathrm{ng} / \mathrm{g}, 1 \mathrm{ng} / \mathrm{g}$, and $10 \mathrm{ng} / \mathrm{g}$

	0.1 (ng/g)		1 (ng/g)		10 (ng / g)		$\begin{aligned} & \mathrm{LOO} \\ & (\mathrm{ng} / \mathrm{g}) \end{aligned}$
	Rec (\%)	RSD (\%)	Rec (\%)	RSD (\%)	Rec (\%)	RSD (\%)	
PCB28	112.9	20.1	108.0	2.0	102.6	5.7	0.02
${ }^{13} \mathrm{C}_{12}$-PCB52	105.1	3.7	98.7	2.4	105.5	3.2	0.01
PCB52	115.0	9.0	105.7	1.8	107.8	3.9	0.01
PCB95	108.9	7.9	100.9	1.4	109.6	2.7	0.01
PCB91	108.9	6.0	98.5	2.3	107.7	3.3	0.02
PCB101	116.5	6.7	96.9	1.7	102.3	3.8	0.02
PCB136	114.9	5.2	99.4	0.4	108.9	2.4	0.01
PCB77	94.8	8.7	93.7	1.4	100.7	5.5	0.02
PCB149	105.8	10.2	98.1	0.9	100.1	4.2	0.01
PCB118	95.0	7.3	90.6	0.8	95.3	4.6	0.02
PCB114	93.3	3.4	88.8	1.5	95.9	4.5	0.02
PCB153	99.8	1.9	83.2	3.0	87.1	5.0	0.02
PCB105	115.5	9.8	91.0	5.0	99.9	3.6	0.02
PCB176	110.9	11.5	85.0	2.8	94.7	5.0	0.01
PCB138	117.7	6.1	90.1	5.0	96.1	3.1	0.01
PCB183	96.7	13.6	79.3	2.2	84.1	6.6	0.02
PCB167	80.3	10.7	80.8	5.5	84.6	4.4	0.02
PCB157	98.9	8.7	84.5	2.1	89.2	5.1	0.05
PCB180	89.5	15.8	79.0	2.6	83.0	5.8	0.05
PCB169	92.2	12.2	72.4	3.5	70.1	6.2	0.05
PCB189	83.6	13.1	70.0	2.5	76.2	5.3	0.02

All recoveries at $0.1,1$, and $10 \mathrm{ng} / \mathrm{g}$ ranged between 70 and 120%, with the majority of recoveries greater than 90% at all concentrations. The precision was satisfactory, with the majority of RSDs below 10%, which complies with SANCO/12471/2013 [7]. In general, the PCBs with seven chlorine atoms had relatively lower recoveries than those with six or fewer chlorine atoms. The LOOs of these 20 PCB congeners in soil ranged between 0.01 and $0.05 \mathrm{ng} / \mathrm{g}$, which were lower than those previously reported by other authors [8-10]. Table 2 gives the resulting LOOs.

As described above, the performance of the present method was satisfactory, with low LOOs as well as good recovery and precision. Compared with traditional methods such as soxhlet extraction and accelerated solvent extraction, the proposed method used less organic solvent (only 10 mL of acetonitrile was needed), a shorter extraction time (3 minutes of vortexing), and no special equipment, which made the method simple and environmentally friendly.

Analysis of certified reference material

Metrological traceability is essential to ensure that measurement results are comparable in time and space [11]. The use of certified reference material (CRM) provides quality assurance in environmental analysis, and makes reliable and tractable analytical results possible. To further test the QuEChERS-based method, we analyzed CRM BW 3714, seven PCBs in soil. The results for the PCB-containing CRM is listed in Table 3. The results obtained by the OuEChERS-based method were in good agreement with the certified value of the CRM. All the results were within the uncertainty range given in the CRM, and good repeatability was obtained.

Table 3. Results from the Analysis of CRM Using the QuEChERS-based Method

PCBs	BW3714		Analysis results	
	Certified value (ng / g)	Uncertainty range (ng / g)	Analyzed value (ng / g)	$\begin{aligned} & \text { SD } \\ & (\mathrm{n}=3) \end{aligned}$
PCB28	7.36	6.63-8.09	6.80	0.03
PCB52	1.40	1.23-1.57	1.33	0.04
PCB101	1.45	1.32-1.58	1.57	0.07
PCB118	4.56	4.20-4.92	4.79	0.10
PCB153	0.64	0.60-0.68	0.64	0.04
PCB138	0.89	0.78-1.00	0.81	0.04
PCB180	0.23	0.18-0.28	0.23	0.03

Analysis of real samples

The method was used to analyze 66 soil samples collected from agricultural fields located in different cities in Shandong Province, China. Soil samples 1-16 were collected from rice fields, vineyards, and apple orchards. Samples 17-66 were collected in greenhouses from Shouguang, the largest vegetable base in China, located in east Shandong province. Soil was sampled from the upper layer ($0-30 \mathrm{~cm}$), and transported to the laboratory where it was air-dried and sieved through a $2-\mathrm{mm}$ mesh. The soil samples were weighed into a $50-\mathrm{mL}$ centrifuge tube, and 0.5 mL of surrogate $(25 \mathrm{ng} / \mathrm{mL})$ was added. The samples were allowed to stand for 24 hours in room temperature before extraction. Nine of the 20 PCB congeners were identified in 16 soil samples, with four of them being marker PCBs (PCB 28, 52, 138, and 153). The detection rates and concentrations of the PCBs were typically low. Only seven samples were found to contain PCB congeners with concentrations higher than the corresponding LOQs. Most of the detected PCBs were at concentrations lower than the LOOs. Compared to the low concentrations of PCBs in agricultural fields, the detection rate and concentrations in the E-Waste site soil were much higher [12-13].

Conclusions

This application note demonstrates the applicability of the QuEChERS-based procedure, combined with GC/MS/MS for the determination of 20 selected PCBs in soil. Satisfactory validation parameters including linearity, LOO, and RSD were obtained, demonstrating the feasibility of the method. The method was applied for 66 agricultural soils, and nine of the 20 PCBs were detected at low concentrations. This simple and sensitive method is expected to provide a new chemical analysis method for PCB monitoring and environmental behavior studies in soil.

References

1. F. E. Ahmed. Trends in Analytical Chemistry 22, 170-185 (2003).
2. M. E. Aydin, A. Tor, S. Özcan. Analytica Chimica Acta 577, 232-237 (2006).
3. M. L. Diamond, et al. Environ. Sci. \& Technol. 44, 2777-2783 (2010).
4. M. C. Bruzzoniti, et al. J. of Chromatog. A 1265, 31-38 (2012).
5. M. Anastassiades, et al. J. of AOAC Int. 86, 412-431 (2003).
6. Z. He, et al. J. of Sep. Sci. 38, 3766-3773 (2015).
7. E. C. Dg-sanco. "Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed" SANCO/12571/2013 (2013).
8. H. R. Norli, A. Christiansen, E. Deribe. J. of Chromatog. A 1218, 7234-7241 (2011).
9. O. Luzardo, et al. Anal. Bioanal. Chem. 405, 9523-9536 (2013).
10. B. Albero, et al. J. of Chromatog. A 1248, 9-17 (2012).
11. D. B. Hibbert. Accredit. Qual. Assur. 11, 543-549 (2006).
12. Y. Wang, et al. Chemosphere 85, 344-350 (2011).
13. S. J. Chen, et al. Environ. Sci. Technol. 48, 3847-3855 (2014).

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.
© Agilent Technologies, Inc., 2016
Printed in the USA
May 23, 2016
5991-6980EN

Agilent Technologies

