

Poster Reprint

ASMS 2019 TP187

Fast Semivolatiles Method by GC/MS/MS that Meets EPA 8720D/E Requirements

Melissa Churley¹, Bruce Quimby² and Anastasia Andrianova²

¹Agilent Technologies Inc., Santa Clara, CA 95051 USA;

²Agilent Technologies Inc., Wilmington, DE 19808 USA

Introduction

A wide calibration range of 0.02 – 160 ppm was achieved in a single, 10-minute MRM analysis for EPA 8270D/E compounds. Low compound %RSDs were achieved, which are indicative of how long the continuing calibration will last. An extended maintenance interval results, leading to increased productivity and a lower cost of operation.

Real field samples were analyzed by a 7000D GC/TQ using Dynamic MRM (dMRM) and in scan mode to compare results. Use of dMRM lowers detection limits and facilitates sample batch review when compared with scan analysis.

A new direct insertion device for GC/MS, which contains a very short GC column and is mounted on either a 5975 or 5977 GC/MSD, was evaluated for quick sample screening as this may expedite the laboratory workflow by identifying high-level analytes and matrix prior to the extraction process.

Experimental

8270 initial calibration criteria

- ✓ Avg RF %RSD \leq 20 (preferred as default)
- ✓ If not, linear curve fit ($R^2 \ge 0.990$)
- ✓ If not, then quadratic fit
 - 6 points needed for a curve fit
 - Accuracy for lowest point needs to be ±30%

Instrument conditions

The 7890B/7000D was autotuned. The GC column was a 20m x 180µm x 0.18 µm 5% phenyl (polysiloxane) which was connected to a SSL inlet. Injection was 1 µL using a 1:20 split into an Ultra Inert low pressure drop split liner with wool. Flow was set to 1.2 mL/min and the method was retention time locked to acenaphthene-d10 at 4.58 minutes. The instrument was operated in dMRM mode. Batches were also run in scan mode to compare chromatography. The split ratio was adjusted to meet isomer resolution requirements and avoid wide peaks with rounded tops. Detector gain was adjusted to maximize linearity, which is critical to achieving the widest calibration range. Therefore, no peak in the BPC of the high 160ppm standard exceeded 6 x 10⁷ counts in height.

Experimental, cont.

10-minute analysis of 77 standards and 6 ISTDs

Top: Zoom of MRM TIC showing 77 targets at the 0.2 ppm level. Bottom: Zoom out showing all six ISTDs (refer to initial calibration table for ISTDs)

Calibration

Eleven levels ranging from 0.02 -160 ppm were prepared and 20 ppm ISTD was added. Results were analyzed using MassHunter Quantitative Analysis software. Data points for each compound at the low and high ends of the calibration range could be deleted to meet calibration criteria. Results by dMRM are presented.

Results

A complex field sample in scan mode

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 8.5 7 7.5 8 8.5 9 9.5 Counts vs. Acquisition Time (min)

ISTD perylene-d12 in landfill leachate extract. The EIC trace in blue is overlaid with the complex scan TIC trace shown in black. Analysis of highly complex samples such as this was improved in terms of detection and relative ease of batch review by using dMRM. Field sample results in both dMRM and scan modes are compared later on this poster.

2

Initial calibration over the range of 0.02 – 160 ppm

Name	RT	Avg. RF RSD	CF R2	Curve Fit	Name	RT	Avg. RF RSD	CF R2	Curve Fit
NDMA	1.364	5.0	0.9994	Linear	Acenaphthylene	4.475	4.9	0.9995	Linear
Pyridine	1.389	8.6	0.9979	Linear	3-Nitroaniline	4.54	27.2	0.9995	Quadratic
2-Fluorophenol	1.877	5.0	0.9979	Linear	Acenaphthene-d10	4.575	6.2		Linear
Phenol-d6	2.336	8.7	0.9967	Linear	Acenaphthene	4.597	5.9	0.9991	Linear
Phenol	2.344	7.9	0.9983	Linear	2,4-Dinitrophenol	4.619	35.5	0.9998	Quadratic
Aniline	2.379	5.0	0.9987	Linear	4-Nitrophenol	4.654	34.8	0.9996	Quadratic
Bis(2-chloroethyl) ether	2.409	3.6	0.9990	Linear	2,4-Dinitrotoluene	4.707	29.7	0.9997	Quadratic
2-Chlorophenol	2.447	9.8	0.9969	Linear	Dibenzofuran	4.719	11.5	0.9903	Linear
1,3-Dichlorobenzene	2.538	6.4	0.9978	Linear	Diethyl phthalate	4.89	17.2	0.9962	Linear
1,4-Dichlorobenzene-d4	2.571	4.9		Linear	Fluorene	4.959	8.1	0.9905	Linear
1,4-Dichlorobenzene	2.581	7.9	0.9976	Linear	4-Chlorophenyl phenyl ether	4.965	6.6	0.9954	Linear
Benzyl alcohol	2.641	11.6	0.9942	Linear	4-Nitroaniline	4.97	27.8	0.9995	Quadratic
1,2-Dichlorobenzene	2.672	6.2	0.9979	Linear	DNOC (2-Methyl-4,6-dinitrophenol)	4.99	32.7	0.9999	Quadratic
2-Methylphenol (o-Cresol)	2.700	10.1	0.9983	Linear	N-Nitrosodiphenylamine	5.046	11.9	0.9991	Linear
Bis(2-chloro-1-methylethyl) ether	2.728	4.0	0.9994	Linear	Azobenzene	5.076	12.9	0.9989	Linear
4-Methylphenol (p-Cresol)	2.794	13.7	0.9964	Linear	2,4,6-Tribromophenol	5.125	24.0	0.9916	Linear
N-Nitrosodi-n-propylamine	2.806	13.7	0.9955	Linear	4-Bromophenyl phenyl ether	5.308	6.0	0.9992	Linear
Hexachloroethane	2.880	4.4	0.9995	Linear	Hexachlorobenzene	5.344	7.1	0.9979	Linear
Nitrobenzene-d5	2.901	15.5	0.9943	Linear	Pentachlorophenol	5.483	26.8	0.9997	Quadratic
Nitrobenzene	2.913	8.7	0.9984	Linear	Phenanthrene-d10	5.617	6.4		Linear
Isophorone	3.065	7.5	0.9991	Linear	Phenanthrene	5.635	8.6	0.9963	Linear
2-Nitrophenol	3.115	19.1	0.9916	Linear	Anthracene	5.67	5.8	0.9991	Linear
2,4-Dimethylphenol (2,4-Xylenol)	3.136	14.0	0.9951	Linear	Carbazole	5.784	12.1	0.9990	Linear
Bis(2-chloroethoxy)methane	3.204	4.9	0.9991	Linear	Dibutyl phthalate	6.049	26.0	0.9972	Linear
Benzoic acid	3.216	47.2	0.9996	Quadratic	Fluoranthene	6.477	10.7	0.9988	Linear
2,4-Dichlorophenol	3.269	16.8	0.9954	Linear	Pyrene	6.636	6.6	0.9977	Linear
1,2,4-Trichlorobenzene	3.329	7.6	0.9977	Linear	p-Terphenyl-d14	6.757	8.7	0.9967	Linear
Naphthalene-d8	3.368	5.0		Linear	Benzyl butyl phthalate	7.115	30.8	1.0000	Quadratic
Naphthalene	3.383	6.3	0.9979	Linear	3,3'-Dichlorobenzidine	7.474	29.3	0.9993	Quadratic
4-Chloroaniline	3.413	7.0	0.9992	Linear	Chrysene-d12	7.495	13.7		Linear
Hexachlorobutadiene	3.467	5.5	0.9978	Linear	Benz[a]anthracene	7.509	10.0	0.9957	Linear
4-Chloro-3-methylphenol	3.737	16.9	0.9932	Linear	Chrysene	7.514	6.2	0.9984	Linear
2-Methylnaphthalene	3.853	9.9	0.9942	Linear	Bis(2-ethylhexyl) phthalate	7.532	36.7	0.9993	Quadratic
Hexachlorocyclopentadiene	3.962	16.8	0.9948	Linear	Di-n-octyl phthalate	7.972	20.0	0.9788	Linear
2,4,5-Trichlorophenol	4.057	15.4	0.9891	Linear	Benzo[b]fluoranthene	8.213	11.0	0.9988	Linear
2,4,6-Trichlorophenol	4.065	19.7	0.9989	Linear	Benzo[k]fluoranthene	8.233	14.8	0.9971	Linear
2-Fluorobiphenyl	4.107	9.2	0.9953	Linear	Benzo[a]pyrene	8.44	16.6	0.9991	Linear
Chloronaphthalene, 2-	4.187	7.3	0.9961	Linear	Perylene-d12	8.48	20.6		Linear
2-Nitroaniline	4.254	26.1	0.9994	Quadratic	Benzo[g,h,i]perylene	9.593	13.3	0.9989	Linear
Dimethyl phthalate	4.391	9.6	0.9982	Linear	Indeno[1,2,3-cd]pyrene	9.593	13.3	0.9989	Linear
2,6-Dinitrotoluene	4.428	21.7	0.9933	Linear	Dibenz[a,h]anthracene	9.595	20.7	0.9951	Linear

In the table above, ISTDs are highlighted in orange, 69 compounds that passed RSD criteria are in green and 15 that passed by regression analysis are in blue. Benzidine did not pass. Two compounds had an acceptable range of 5 -160 ppm, six each had a range of 2-160 ppm or 0.5 -160 ppm, two were at 0.2 – 160 ppm and two at 0.02 – 120 ppm. The majority of compounds, 57 in number, passed calibration from 0.02 -160 ppm. One method covered the entire range.

The QuickProbe utilizes a short column with open inlet and was mounted on the GC of a 5977 GC-MSD. Sampling was done using solid glass probes. Unknowns Analysis software was used to search deconvoluted components of landfill leachate extract against the NIST library (left). Targeted screening in MassHunter Quant shows that pyrene is present (right). The concentration of pyrene was determined to be 3 ppm by dMRM analysis.

3

Improved detection for field samples using Dynamic MRM

detected using dMRM vs. scan. Batch review may be facilitated due to the improved chromatography with dMRM.

A 10-minute method for EPA 8270 has been developed using dMRM mode. More target compounds were found in real samples using dMRM as opposed to scan mode, and batch review was made easier due to the increased selectivity. A 60-90 second sample pre-screen using a direct insertion device for GC/MS can expedite laboratory workflow.

The authors would like to thank Agustin Pierri of Weck Labs, Inc. for samples and his contributions to this work.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Published in USA, June 2, 2019

