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Challenges in pesticide analysis by GC/MS

Pesticides are widely used for production of the crops. 
The minimum residual level of pesticides in foods is 
regulated by the governments worldwide to protect 
the consumers’ health. GC/MS is widely used for 
detection of various residual pesticides in foods for 
safety; however, the recovery ratio can vary by various 
factors such as the sample matrix, the pesticides’ 
chemical properties of the pesticides and the sample 
preparation treatment, etc.. The prediction of recovery 
rate is important for ensuring the food safety. In the 
present study, we demonstrate how to select the 
most suitable machine learning regression models to 
predict the pesticides recovery of crops of GC/MS 
using the molecular fingerprinting for the quality 
control, quality assurance and method development 
of food analysis.

Introduction Experimental

Figure 1 Sample preparation workflow for Japan 
Positive List

Assignment of Molecular Descriptor (MD) using 
SMILES strings

SMILES strings (SMILES) from the PubChem website 
were added to the data set for 248 pesticides, which 
have unique SMILES and one chromatographic peak 
in GC/MS, i.e. we excluded the pesticides which have 
several chromatographic peaks for data consistency 
in present study. 224 Molecular Descriptors (MD) 
were added to the data set using the rcdk package of 
R program After deleting “N/A” descriptor values, the 
data set of 7 crops of 248 pesticides with 178 
remaining MD (Table 1) were finally used for machine 
learning to build the prediction model of recovery rate.

Building and predicting the recovery rate by machine 
learning methods

89 machine learning methods of regression analysis 
(Table 2) were used for prediction of recovery rate of 
the pesticides, which includes 69 ordinary learning 
methods and 20 ensemble learning methods.

Descriptor Class Descriptor (Description)

ALOGP Descriptor (2) ALogP (Ghose-Crippen LogKow), ALogP2 (Square of ALogP)

APol Descriptor (1) Apol (Sum of the atomic polarizabilities (including implicit hydrogens)

Aromatic Atoms Count Descriptor (1) naAromAtom (Number of aromatic atoms)

Aromatic Bonds Count Descriptor (1) nAromBond (Number of aromatic bonds)

Atom Count Descriptor (2) nAtom (Number of atoms), nB (Number of boron atoms)

Autocorrelation Descriptor Charge (5) ATSc1, ATSc2, ATSc3, ATSc4, ATSc5 (ATS autocorrelation descriptor, weighted by charges)

Autocorrelation Descriptor Mass (5) ATSm1, ATSm2, ATSm3, ATSm4, ATSm5 (ATS autocorrelation descriptor, weighted by scaled atomic mass)

Autocorrelation Descriptor Polarizability 

(5)
ATSp1, ATSp2, ATSp3, ATSp4, ATSp5 (ATS autocorrelation descriptor, weighted by polarizability)

BCUT Descriptor (6)

BCUTw.1l (nhigh lowest atom weighted BCUTS), BCUTw.1h (nlow highest atom),  

BCUTc.1l (nhigh lowest partial charge), BCUTc.1h (nlow highest partial charge) BCUTp.1l (nhigh lowest polarizability), 

BCUTp.1h (nlow highest polarizability)

BPolDescriptor (1)
bpol (Sum of the absolute value of the difference between atomic polarizabilities of all bonded atoms in the molecule 

(including implicit hydrogens))

Carbon Types Descriptor (9)

C1SP1 (Triply bound carbon bound to one other carbon), C2SP1 (Triply bound carbon bound to two other carbons), C1SP2 

(Doubly hound carbon bound to one other carbon), C2SP2 (Doubly bound carbon bound to two other carbons), C3SP2 

(Doubly bound carbon bound to three other carbons), C1SP3 (Singly bound carbon bound to one other carbon), C2SP3 

(Singly bound carbon bound to two other carbons), C3SP3 (Singly bound carbon bound to three other carbons), C4SP3 

(Singly bound carbon bound to four other carbons) 

Chi Chain Descriptor (10) SCH.3-7 (Simple chain, orders 3-7), VCH.3-7 (Valence chain, orders 3-7)

Chi Cluster Descriptor (8) SC.3-6 (Simple cluster, orders 3-6) , VC.3-6 (Valence cluster, orders 3-6)

Chi Path Cluster Descriptor (6) SPC.4-6 (Simple path cluster, orders 4 to 6), VPC.4-6 (Valence path cluster, orders 4-6)

Chi Path Descriptor (16) SP.0-7 (Simple path, orders 0-7), VP.0-7Valence path, orders 0-7

Eccentric Connectivity Index Descriptor 

(38)

ECCEN (A topological descriptor combining distance and adjacency information),

khs.sCH3 (Count of atom-type E-State: -CH3), khs.dCH2 (=CH2), khs.ssCH2 (-CH2-), khs.tCH (#CH), khs.dsCH (=CH-), 

khs.aaCH (:CH: ), khs.sssCH (>CH-), khs.tsC (#C-), khs.dssC (=C<), khs.aasC (:C:- ), khs.aaaC (::C: ), khs.ssssC (>C<), 

khs.sNH2 (-NH2), khs.ssNH (-NH2-+), khs.aaNH (:NH: ), khs.tN (#N), khs.sssNH (>NH-+),khs.dsN (=N-), khs.aaN (:N:), 

khs.sssN (>N-), khs.ddsN (-N<<), khs.aasN (:N:- ), khs.sOH (-OH), khs.dO (=O), khs.ssO (-O-), khs.aaO (:O:), khs.sF (-F), 

khs.ssssSi (>Si<), khs.dsssP (->P=), khs.dS (=S), khs.ssS (-S-), khs.aaS (aSa), khs.dssS (>S=), khs.ddssS (>S==), khs.sCl (-Cl),

khs.sBr (-Br)

Fragment Complexity Descriptor (1) fragC (Complexity of a system)

H Bond Acceptor Count Descriptor (1) nHBAcc (Number of hydrogen bond acceptors)

H Bond Donor Count Descriptor (1) nHBDon (Number of hydrogen bond donors)

KappaShape Indices Descriptor (3) Kier1-3 (First, Second, Third kappa (κ) shape indexes) 

Largest Chain Descriptor (1) nAtomLC (Number of atoms in the largest chain)

Longest Aliphatic Chain Descriptor (1) nAtomLAC (Number of atoms in the longest aliphatic chain)

Mannhold LogP Descriptor (1) MLogP (Mannhold LogP)

MDEDescriptor (19)

MDEC.11 (Molecular distance edge between all primary carbons), MDEC.12 (between all primary and secondary carbons), 

MDEC.13 (between all primary and tertiary carbons), MDEC.14 (between all primary and quaternary carbons), MDEC.22 

(between all secondary carbons), MDEC.23 (between all secondary and tertiary carbons), MDEC.24 (between all secondary 

and quaternary carbons), MDEC.33 (between all tertiary carbons), MDEC.34 (between all tertiary and quaternary carbons), 

MDEC.44 (between all quaternary carbons), MDEO.11 (between all primary oxygens), MDEO.12 (between all primary and 

secondary oxygens), MDEO.22 (between all secondary oxygens), MDEN.11 (between all primary nitrogens), MDEN.12 

(between all primary and secondary nitrogens), MDEN.13 (between all primary and tertiary niroqens), MDEN.22 (between all 

secondary nitroqens), MDEN.23 (between all secondary and tertiary nitrogens), MDEN.33 (between all tertiary nitrogens)

PetitjeanNumberDescriptor (1) PetitjeanNumber (Petitjean number)

RotatableBondsCountDescriptor (1) nRotB (Number of rotatable bonds, excluding terminal bonds)

RuleOfFiveDescriptor (1) LipinskiFailures (Number failures of the Lipinski's Rule Of 5)

TPSADescriptor (19) TopoPSA (Topological polar surface area)

VAdjMaDescriptor (1) VAdjMat (Vertex adjacency information (magnitude))

WeightDescriptor (1) MW (Molecular weight)

WeightedPathDescriptor (5) WTPT.1 (Molecular ID), WTPT.2 (Molecular ID / number of atoms), WTPT.3 (Sum of path lengths starting from 

heteroatoms), WTPT.4 (Sum of path lengths starting from oxygens), WTPT.5 (Sum of path lengths starting from nitrogens)

WienerNumbersDescriptor (2) WPATH (Weiner path number), WPOL (Weiner polarity number) 

XLogPDescriptor (1) XLogP (XLogP)

ZagrebIndexDescriptor (1) Zagreb (Sum of the squares of atom degree over all heavy atoms i)

Petitjean Shape Index Descriptor (1) topoShape (Petitjean topological shape index) 

Others (17)

nAcid (Acidic group count descriptor), nBase (Basic group count descriptor), nSmallRings (the number of small rings from 

size 3 to 9), nAromRings (the number of aromatic rings), nRingBlocks (total number of distinct ring blocks), nAromBlocks

(total number of "aromatically connected components"), nRings3, 5, 6, 7 (individual breakdown of small rings), tpsaEfficiency

(Polar surface area expressed as a ratio to molecular size), VABC (Atomic and Bond Contributions of van der Waals volume), 

HybRatio (the ratio of heavy atoms in the framework to the total number of heavy atoms in the molecule.), tpsaEfficiency.1 

(Polar surface area expressed as a ratio to molecular size), TopoPSA.1 (Topological polar surface area), topoShape.1(A 

measure of the anisotropy in a molecule)

Table 1 178 molecular descriptors in present study

Experimental

Data set of pesticide recovery of vegetables

Pesticide recovery rates were gathered from the 
literature [1], the samples (7 types of vegetables and 
fruits) were treated according to the procedure of 
Japan Positive List [2] as shown in Figure 1.The 
recovery rate was calculated with the solvent 
standard peak area, which was calculated by the 
calibration curve (CC) of 20 ppb, 50 ppb, 100 ppb, 200 
ppb as expressed by the formula (1).

Recovery rate (%) =
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 50 𝑝𝑝𝑏 𝑠𝑝𝑖𝑘𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 50 𝑝𝑝𝑏 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑠𝑡𝑎𝑛𝑑𝑟𝑑 𝐶𝐶
× 100 (1)
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Results

Building and evaluation of regression model for 
pesticide recovery rate using machine learning 
method

For the metrics of machine learning method 
performance, Prediction Error (PE) calculated by the 
formula (2) with the 10-fold cross validation, the time 
for building the model Execution Time (ET: in sec) and 
the generalization performance of prediction error PEk
calculated by (3) were used.

Prediction Error (PE) 𝑃𝐸𝑗 =
σ𝑖=1
𝑁 𝑦𝑜𝑏𝑠

𝑖𝑗
−𝑦𝑝𝑟𝑒𝑑

𝑖𝑗 2

σ𝑖=1
𝑁 𝑦𝑜𝑏𝑠

𝑖𝑗
−ത𝑦 𝑗

2 （2）

Algorithm Methods in caret

(a) Ordinary learning methods

Kernel (17)
gaussprRadial, gaussprPoly, krlsPoly, gaussprLinear, krlsRadial, rvmLinear, 
rvmRadial, rvmPoly, svmRadial, svmRadialCost, svmRadialSigma, svmLinear, 
svmLinear2, svmPoly, svmLinear3, kernelpls (PLS), widekernelpls (PLS)

Simple Linear (16)
lm, leapSeq, leapForward, leapBackward, lmStepAIC, bridge, bayesglm (GLM), 
glmStepAIC (GLM), icr (ICA), pcr (PCA), superpc (PCA), superpc (PCA), nnls (PLS), 
simpls (PLS), pls (PLS), plsRglm (PLS, GLM), glm (GLM)

Sparse modeling 
(11)

penalized, blassoAveraged, foba, ridge, relaxo, lasso, Blasso, lars, lars2, glmnet, enet

Neural Network 
(9)

rbfDDA, dnn, neuralnet, brnn, mlpML, mlp, mlpWeightDecay, msaenet, monmlp

Decision Tree (8) rpart2, rpart1SE, ctree, ctree2, evtree, M5Rules, M5, WM
Centroid,kNN (3) knn, kknn, SBC
Spline (2) gcvEarth, earth
Others (3) ppr, spikeslab, xyf (LVQ)

(b) Ensemble learning methods

Decision Tree (14)
cforest, ranger, qrf, rf, parRF, extraTrees, Rborist, RRFglobal, RRF, treebag, bstTree, 
gbm, xgbTree, nodeHarvest

Simple Linear (3) BstLm, glmboost (GLM), xgbLinear
Spline (3) bagEarthGCV, bagEarth, xgbDART

Table 2 Machine Learning methods for regression 
analysis used in present study

where, 𝑦𝑜𝑏𝑠
𝑖𝑗

is the actual 

recovery rate, 𝑦𝑝𝑟𝑒𝑑
𝑖𝑗

is 
the recovery rate from 
the prediction model, 
and ത𝑦 𝑗 is the average of 
recovery ratio of that 
crop.

Generalization 
Performance Index (PEk) 

𝑃𝐸𝑘 =
σ𝑗=1
𝑀 𝑃𝐸𝑗

(𝑘)

𝑀
(3)

where 𝑃𝐸𝑗
(𝑘)

is the rank 
of the machine learning 
method in that crop, k is 
the method ID in the 
caret and M is the 
number of crop, 7 for the 
present study.

Experimental

Results

Correlation between recovery rate of pesticide and 
molecular descriptors.

Before building the prediction model for regression, 
the Pearson correlation coefficient between pesticide 
recovery rate and MD were investigated. The 
coefficients ranged between -0.254 and 0.523 as 
shown in the Figure 2, i.e. weak correlation between 
recovery rate and each single MD. Figure 3 and 4 
shows examples of top 6 positive and negative MDs. 
The result showed that the recovery rate cannot be 
predicted by any single MD.

Figure 2 Histogram of recovery 
rate and MD for seven crops 

Figure 3 and 4 Scatter 
plots of top 6 positive and 
negative correlation 
coefficient MD for brown   
rice

Figure 6 Prediction Error (PE) and Execution Time (ET) 
for 89 machine learning methods. 

Figure 5 Histogram of 
correlation coefficient 
between actual and 
predicted  pesticide recovery
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We developed the method for prediction of pesticides 
recovery using the machine learning. Various machine 
learning methods have been developed and available 
online, but the performance of prediction and execution 
time vary. The PE, ET and PEk are the metrics to evaluate 
the optimum machine learning methods for prediction.

The SBC (Subtractive Clustering and Fuzzy c-Means 
Rules) of Centroid kNN category and xgbLinear (eXtreme
Gradient Boosting Linear) of Ensemble Spline Linear 
category are the optimum machine learning methods for 
predicting the pesticide recovery rate of present study.

Discussion

Conclusions
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PE and ET results: Best machine learning methods

Figure 5 shows that some machine learning methods 
have high correlation coefficients between the actual 
pesticide recovery rate and predicted recovery rate, i.e. 
good prediction performance. PE and ET of 7 crops 
average in log scale were shown in Figure 6. ET were 
ranged from 0.83 sec to 7,394 sec (approx. 2 hours). 

The top 20 machine learning methods of PE in 7 crops 
average were shown in Figure 7.  Four excellent methods
(SBC, xgbLinear, monmlp, ppr) were listed as the 
candidates of best methods for the present study.

PE and ET in Machine learning category

The 89 machine learning methods were classified in 8 
categories of ordinary machine learning methods and 
ensemble machine learning methods.

Among the ordinary machine learning methods, the 
“Centroid kNN” category gives a better PE than others. 
The “Simple linear” and “Neural Network” are simple and 
common methods, however their PE were not excellent in 
the present study.

Among the ensemble learning methods, DT (Decision 
Tree) and Spline required longer ET with worse PE than 
the Spline Linear category.

Figure 7 Top 20 PE machine 
learning methods and their 
ET 

Figure 7 shows some 
machine learning methods 
have variance by the crops.

The generalization 
performance index and 
normalized PE are shown in 
Figure 8. Please note that 6 
machine learning methods 
(rbfDDA, bridge, 
blassoAveraged, bagEarth, 
lars, lasso) with PE > 1.0 
were excluded, since these 
models do not yield a 
meaningful prediction by 
definition.

Figure 8 indicates that SBC
and xgbLinear are excellent 
performance in both PE and 
PEk.

Figure 8  Prediction Error and generalization 
performance index (PEk) 

Figure 9 PE and ET of machine learning category


