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Techniques for identifying or classifying samples from 
chromatogram data by using machine learning algorithms 
have attracted considerable attention. In machine learning 
from chromatogram data, it is necessary to create a data table 
from peak intensity information, but the accuracy of the 
discriminant model may be reduced if a correlation exists 
between the sizes of the peaks or the sizes of the peaks are 
extremely different. For this reason, pretreatment of the data 
after creation of the data table of peak information is generally 
necessary in machine learning of chromatogram data.  
This article introduces an example of the workflow in 
discovery of discriminant markers from GC-MS scan data of 
food samples by using Python 3.7. 

T. Sakai 
 

 Data Acquisition 

The data used here was the dataset for beef introduced in 
Application News No. M276. As shown in Fig. 1, two types of 
samples were prepared using red meat from various cuts of 
beef: properly refrigerated samples (4 °C samples) and samples 
which were expected to display deterioration due to exposure 
to a 40 °C environment for 3 h (40 °C samples). 20±3 mg of each 
sample was taken and placed in individual measurement vials. 
A total of 116 samples was prepared, comprising 58 of the 4 °C 
samples and 58 of the 40 °C samples, and the composition of 
the gas generated when the samples were heated to 200 °C 
was analyzed by the Solid Phase Micro Extraction (SPME) 
method. An AOC-6000 auto injector, which enabled automatic 
SPME injection, was used in this analysis (Fig. 2). 
Fig. 3 shows an example of a chromatogram obtained as a 
result. Classification of the sample types was not possible 
from the sample appearance or the appearance of the 
chromatogram analysis results. 

   

 

 
Fig. 1  Left: Properly 

Refrigerated Sample (4 °C 

Sample), Right: Sample 

Exposed to 40 °C Environment 

for 3 H (40 °C Sample) 

 
Fig. 2  Appearance of GCMS-

QP™2020 + AOC-6000 

 
Fig. 3  Example of Total Ion Chromatograms 

Black: 4 °C Sample, Blue: 40 °C Sample  

Picking/alignment of the deconvolution/peaks of the 
chromatogram data were done using the mass spectrometry 
data analysis software MZmine 2 (Ver. 2.32). The peak heights 
were output as data, as this data is relatively unaffected by 
waveform processing. 
Because the dataset was extremely wide, comprising 9,318 
peaks × 116 datafiles, we basically proceeded in the direction 
of reducing unnecessary peak data (features) for the data 
pretreatment. 
 

 Data Pretreatment and Model Creation 

1. Treatment of missing values 

Although imputation of missing values in chromatogram 
data is possible by adjusting the waveform processing 
parameters to some extent, it is almost always impossible to 
eliminate all missing values. In such cases, artificial 
substitution by a simple calculation, separate regression 
analysis, or the like is not considered advisable. Therefore, in 
this study, all features, including missing values, that 
occurred even once were deleted by using a commercial 
spreadsheet program. As a result, it was possible to narrow 
the features of the dataset to 200 peaks × 116 datafiles. 
 
2. Data reading by Python and division into training 

and test sets 

After deletion of the missing values, the feature names, data 
names, and similar information were input in the same 
general spreadsheet program. The dataset was saved in a CSV 
file, and was then imported to the Python console. 

 

 
 

Here, the data names in each line (“Data001”, “Data002” . . . ), 
the label data in the “freshness” column (“1” or “0”, indicating 
4 °C Sample or 40 °C Sample, respectively), and the other 
feature data in each column (where the peaks are denoted by 
RT followed by a serial number) were arranged. The values of 
the features are the height of the respective peaks. 
As described in Application News No. M276, this dataset was 
split into a training set of 92 datafiles and a test set of 24 
datafiles. The model was created using the training set, and 
predictions were made using the test set. Division was done 
using Stratified Shuffle Split so as to avoid skewing of the 
label data. 
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In [1]: 
import pandas as pd 
data =pd.read_csv("Data.csv", header=0, index_col=0) 
data.head(5)  

Out [1]: 
  freshness  RT1.32_001  ...  RT22.52_199  RT23.48_200 
Data001 0 154497  ... 10100 9510 
Data002 0 154356  ... 12702 10054 
Data003 0 179444  ... 15774 11863 
Data004 0 211854  ... 11123 9546 
Data005 0 129346  ... 12236 10996 
 
[5 rows x 200 columns] 
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3. Correlation between features 

If a strong correlation exists between two features, one of the 
features in which this correlation is recognized is deleted due 
to occurrence of the problem of multicollinearity. For this 
reason, the correlation coefficient between each pair of 
features is checked. 

 

 
Fig. 4  Heatmap of Correlation Coefficient Matrix for Pairs of 

Features 

Many parts are shown in blue and red, indicating correlation of 
multiple features. 
 

 

 

It can be understood that peaks with similar retention times 
include many combinations with high correlation coefficients. 
Here, when a combination of features had a correlation 
coefficient of 0.8 or higher, one of the features was deleted. 
This made it possible to narrow the number of features to 30. 
 
4. Narrowing of features 

After the number of features decreases, the content of each 
feature is checked. 
 
4-1. Distribution of values 
The histograms of the values are checked, and select the 
features that include less outliers and the distribution is 
simple. 

 

 
Fig. 5  Histograms of Features 

Features that are outliers or have skewed distributions are excluded 
from candidates because functioning as a marker is generally difficult. 
 
4-2. Distribution of features by label 
Features whose distribution differs by label have a high 
possibility as marker candidates. The candidates are 
normalized with z-score and validated by a boxplot or other 
appropriate method. 

In [2]: 
def X_y_split(data): 

y = data.iloc[:, 0] 
X = data.iloc[:, 1:] 
return X, y 

 
In[3]: 
def stratified_shuffle_split(X, y, test_size=0.2): 

from sklearn.model_selection import StratifiedShuffleSplit 
sss = StratifiedShuffleSplit(test_size=test_size, random_state=0) 
for train_index, test_index in sss.split(X, y): 

train_X, test_X = X.iloc[train_index], X.iloc[test_index] 
train_y, test_y = y.iloc[train_index], y.iloc[test_index] 

return train_X, test_X, train_y, test_y 
 
In[4]: 
X, y = X_y_split(data) 
train_X, test_X, train_y, test_y = stratified_shuffle_split(X,y,0.2) 

In [5]: 
import seaborn as sns 
sns.heatmap(train_X.corr(), cmap="bwr", ¥ 
xticklabels=False, yticklabels=False) 

In [6]: 
def drop_correlating_columns (train_X, test_X, corr_value=0.8): 

import numpy as np 
corr1 = train_X.corr().abs() 
corr2 = np.triu(corr1.values,1) 
corr3 = np.asarray(np.where(corr2>corr_value)) 
corr4 = np.unique(corr3[1]) 
del_list = train_X.columns[corr4] 
train_X_ncorr = train_X.drop(del_list, axis=1) 
test_X_ncorr = test_X.drop(del_list, axis=1) 
return train_X_ncorr, test_X_ncorr 

 
In [7]: 
train_X_ncorr, test_X_ncorr = drop_correlating_columns¥ 
(train_X, test_X, corr_value=0.8) 
 
In [8]: 
train_X_ncorr.head(5) 

Out[8] 
 RT1.32_001  RT3.98_003  ...  RT19.56_155  RT22.52_199 
Data050 135257 36010  ... 14516 13188 
Data006 129535 34817  ... 7891 10228 
Data032 219201 13716  ... 14183 12402 
Data047 121548 42813  ... 9761 11610 
Data055 90842 31363  ... 13666 13254 
 
[5 rows x 30 columns]  

In [9]: 
def hist_features(data, num): 

import matplotlib 
import matplotlib.pyplot as plt 
plt.figure(figsize=(8,16)) 
plt.subplots_adjust(wspace=0.2, hspace=1) 
matplotlib.rc('xtick', labelsize=8)  
matplotlib.rc('ytick', labelsize=8) 
for i, col in enumerate(list(data.columns)[num:num + 60]): 

plt.subplot(10, 3, i + 1) 
plt.hist(data[col]) 
plt.title(col, fontsize=12) 

return 
 
In [10]: 
hist_features (train_X_ncorr, 0) 
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Fig. 6  Boxplot of Peaks by Label 

 
4-3. Contribution to model 
A temporal model is created here using the current 30 
features, and the contributions of each feature are calculated. 
Since this study concerns the discovery of marker 
compounds with a high contribution to target classification 
by a binary discriminant model for the above-mentioned 4 °C 
and 40 °C samples, a logistic regression type model was used, 
and the hyperparameters “C” and “tol” were optimized by 
grid search. 

 

 
 

 
Fig. 7  Confusion Matrix of Predicted Label and True Label 

 
Although the classification accuracy is 75% at this point, in 
further work, we improved the accuracy of the model by 
selecting features with higher contributions. 
Although the coefficients in logistic regression can be 
considered as contributions of each features, here 
permutation importance algorithm is adopted in terms of its 
higher generality in various type of models. 

 
 
Since the number of samples is relatively small, a single try of 
calculation may not reach true value. Therefore, several split 
patterns of training / test set were tried, and their average 
value was taken. Although the standard deviation was rather 
large, as expected, it was possible to grasp the overall trend. 
 

In [11]: 
def boxplot (train_X, train_y): 

import matplotlib.pyplot as plt 
import pandas as pd 
import seaborn as sns 
plt.figure(figsize=(15,10)) 
for_sns = pd.concat([train_y, train_X], axis=1) 
for_sns = pd.melt(for_sns, id_vars="freshness", var_name="features", 

value_name="value") 
sns.boxplot(x="features", y="value", hue="freshness", data=for_sns) 
plt.xticks(rotation=90) 
plt.tight_layout() 
return 

 
In [12]: 
def standard_scaler_for_train_test (train_X, test_X): 

from sklearn.preprocessing import StandardScaler 
import pandas as pd 
ss = StandardScaler().fit(train_X) 
train_X_scaled = pd.DataFrame(ss.transform¥ 
(X=train_X), columns=train_X.columns, index=train_X.index) 
test_X_scaled = pd.DataFrame(ss.transform¥ 
(X=test_X), columns=test_X.columns, index=test_X.index) 
return train_X_scaled, test_X_scaled 

 
In:[13] 
train_X_ncorr_scaled,test_X_ncorr_scaled=¥ 
standard_scaler_for_train_test (train_X_ncorr, test_X_ncorr) 
boxplot(train_X_ncorr_scaled, train_y) 

In [14]: 
def predict_with_logreg (train_X, test_X, train_y, test_y): 

from sklearn.linear_model import LogisticRegression as logreg 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import accuracy_score as ac 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.metrics import confusion_matrix 
import seaborn as sns 
parameters_logreg = {"C": [100, 10, 1, 0.1, 0.01],  

"tol": [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]} 
gscv = GridSearchCV(logreg(), parameters_logreg, cv=5) 
gscv.fit(train_X.values, train_y.values) 
best_params = gscv.best_params_  
model_01 = logreg(C=best_params["C"],   

tol=best_params["tol"], solver="lbfgs", random_state=4) 
model_01.fit (train_X.values, train_y.values) 
predict_y = pd.Series(model_01.predict(test_X.values), 

index=test_y.index) 
ac_score = ac(test_y, predict_y) 
cm = confusion_matrix(test_y, predict_y) 
plt.figure(figsize=(12,10)) 
ax = plt.subplot() 

sns.heatmap(cm, annot=True,cmap="Blues",fmt="d",cbar=False) 
sns.set(font_scale=2) 
ax.set_xlabel("Predicted Label", fontsize=20) 
ax.set_ylabel("True Label", fontsize=20) 
print("accuracy score is {0}".format(ac_score)) 
return predict_y, model_01 

 
In [15]: 

predict_y_01, model_01 = predict_with_logreg¥ 
(train_X_ncorr_scaled, test_X_ncorr_scaled, train_y, test_y) 

accuracy score is 0.75 

In [16]: 
def permutation_importances (train_X, train_y, iter=10): 

from sklearn.linear_model import LogisticRegression as logreg 
from sklearn.model_selection import GridSearchCV 
from sklearn.model_selection import train_test_split 
from eli5.sklearn import PermutationImportance 
import pandas as pd 
import matplotlib.pyplot as plt 
perm_imps = pd.DataFrame(columns = train_X.columns) 
for i in range(iter): 

tr_X, val_X, tr_y, val_y = train_test_split ¥ 
(train_X, train_y, test_size=0.2, random_state=i) 
parameters_logreg = ¥ 
{"C": [100, 10, 1, 0.1, 0.01], "tol": [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]} 
gscv = GridSearchCV(logreg(), parameters_logreg, cv=5) 
gscv.fit(tr_X, tr_y) 
best_params = gscv.best_params_ 
model_01 = logreg(C=best_params["C"], ¥ 
tol=best_params["tol"], solver="lbfgs", random_state=0) 
model_01.fit (tr_X, tr_y) 
perm = PermutationImportance(model_01, ¥ 
random_state=0).fit(val_X, val_y) 
perm_imps = perm_imps.append ¥ 
(pd.Series(perm.feature_importances_, ¥ 
index=train_X.columns), ignore_index=True)    

plt.figure(figsize=(12,8)).subplots_adjust(bottom=0.3) 
plt.bar(x=train_X.columns, height=perm_imps.mean(), ¥ 
yerr=perm_imps.std()) 
plt.xticks(rotation=90) 
plt.hlines(y=0, xmin=-0.5, xmax=train_X.shape[1]-0.5) 
return perm_imps 
 

In [17]: 
perm_imps = permutation_importances ¥ 
(train_X_ncorr_scaled, train_y) 
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Fig. 8  Values of Permutation Importance of Each Feature 

 

Based on the study and trial-and-error process described 
above, 10 features were selected at this time. 

 

 
 

Because GC-MS scan data are used in this study, a qualitative 
analysis of the candidate marker compounds is possible by 
using library search and reference standards at this point in 
time (Table 1). 
Table 1  Peaks Selected in Study and Their Library Search Results 

Peak #1 hit compound in library search results Variable 
RT1.32_001 Trimethylamine x1 
RT3.98_003 2-hydroxypropanamide x2 
RT7.39_022 gamma.-n-Amylbutyrolactone x3 
RT9.21_035 Uric acid x4 
RT9.40_039 Lauryl acetate x5 
RT12.46_083 9-Octadecen-1-ol x6 
RT12.88_111 Hexadecanamide x7 
RT14.15_116 Oleic Acid x8 
RT16.73_139 Benzyl icosanoate x9 
RT19.56_155 5-Cholestene x10 
 
5. Feature engineering 

In the logistic regression method, the output probability is 
expressed by a first-order standard sigmoid function of the 
features. A higher-order model of the features may be more 
effective in some cases, depending on the dataset. However, 
there is currently a tendency to avoid extreme high-order 
models, which generally result in an increased calculation 
load and overfitting. 
Here, the result of a single division operation for each case was 
used as a new feature “ratio of pairs of compound peaks,” 
considering the fact that the data were chromatograms. 

 

 
Because the number of features became excessive, features 
values were selected arbitrarily based on the distribution and 
contribution of the features, in the same manner as above. 
The final features were as follows: 

 
 

 
Fig. 9  Confusion Matrix of Predicted Label and True Label 

 

Finally, it was possible to classify unknown samples with 
precision of 91.67% by using this model. The equation 
for predicting the probability P of label 1 is as follows. 

 

The classification process is based on P ≥ 0.5  1, P < 0.5  0. 
Table 2  Version Information 

Python 3.7.3  seaborn 0.9.0 
numpy 1.16.2  sklearn 0.20.3 
pandas 0.24.2  eli5 0.8.2 
matplotlib 3.0.3    

 
 

GCMS-QP is a trademark of Shimadzu Corporation in Japan and/or 
other countries.  

In [17]: 
feature_list_01 = pd.Series(["RT1.32_001", "RT3.98_003",¥ 
"RT7.39_022", "RT9.21_035", "RT9.40_039", "RT12.46_083",¥ 
"RT12.88_111", "RT14.15_116", "RT16.73_139", "RT19.56_155"]) 
 
In [18]: 
train_X_dropped = train_X_ncorr_scaled[feature_list_01] 
test_X_dropped = test_X_ncorr_scaled[feature_list_01] 

In [19]: 
def features_ratio (train_X, test_X): 

import pandas as pd 
from sklearn.preprocessing import StandardScaler 
train_X_r = train_X.copy() 
for col1 in train_X.columns: 

for col2 in train_X.columns: 
train_X_r[col1+"_"+col2] = train_X[col1] / train_X[col2] 

test_X_r = test_X.copy() 
for col1 in test_X.columns: 

for col2 in test_X.columns: 
test_X_r[col1+"_"+col2] = test_X[col1] / test_X[col2] 
 

ss = StandardScaler().fit(train_X_r) 
 

train_X_r = pd.DataFrame(ss.transform(train_X_r),¥ 
columns=train_X_r.columns, index=train_X_r.index) 

test_X_r = pd.DataFrame (ss.transform(test_X_r), ¥ 
columns=test_X_r.columns, index=test_X_r.index 

return train_X_r, test_X_r 
 
In [20]: 
train_X_r, test_X_r = features_ratio (train_X_dropped, ¥ 
test_X_dropped) 

In [21]: 
feature_list_final = pd.Series(["RT9.21_035",¥ 
 "RT9.21_035_RT7.39_022", "RT3.98_003_RT9.21_035",¥ 
 "RT3.98_003_RT16.73_139", "RT9.40_039_RT19.56_155",¥ 
 "RT1.32_001_RT9.21_035", "RT16.73_139",¥ 
 "RT14.15_116_RT1.32_001", "RT9.21_035_RT19.56_155",¥ 
 "RT7.39_022_RT9.40_039"]) 
In [22]: 
train_X_final = train_X_r[feature_list_final] 
test_X_final = test_X_r[feature_list_final] 
In [23]: 
predict_y_final, model_final = predict_with_logreg¥ 
(train_X_final, test_X_final, train_y, test_y) 

accuracy score is 0.9166666666666666 

P = (1 + exp (1.19 * x 4 + 1.22 * 
x4
x3

 - 0.21 * 
x2
x4

 - 1.32 * 
x2
x9

 

+ 1.72 * 
x5

x10
 - 0.50 * 

x1
x4

 + 0.18 * x9 + 1.25 * 
x8
x1

 

+ 0.16 * 
x4

x10
 - 0.07 * 

x3
x5

))-1 


