

Application
News

No. M282

Gas Chromatography Mass Spectrometry

Discovery of Markers from Chromatogram Data by

Machine Learning

LAAN-A-MS-E046

Techniques for identifying or classifying samples from
chromatogram data by using machine learning algorithms
have attracted considerable attention. In machine learning
from chromatogram data, it is necessary to create a data table
from peak intensity information, but the accuracy of the
discriminant model may be reduced if a correlation exists
between the sizes of the peaks or the sizes of the peaks are
extremely different. For this reason, pretreatment of the data
after creation of the data table of peak information is generally
necessary in machine learning of chromatogram data.
This article introduces an example of the workflow in
discovery of discriminant markers from GC-MS scan data of
food samples by using Python 3.7.

T. Sakai

 Data Acquisition

The data used here was the dataset for beef introduced in
Application News No. M276. As shown in Fig. 1, two types of
samples were prepared using red meat from various cuts of
beef: properly refrigerated samples (4 °C samples) and samples
which were expected to display deterioration due to exposure
to a 40 °C environment for 3 h (40 °C samples). 20±3 mg of each
sample was taken and placed in individual measurement vials.
A total of 116 samples was prepared, comprising 58 of the 4 °C
samples and 58 of the 40 °C samples, and the composition of
the gas generated when the samples were heated to 200 °C
was analyzed by the Solid Phase Micro Extraction (SPME)
method. An AOC-6000 auto injector, which enabled automatic
SPME injection, was used in this analysis (Fig. 2).
Fig. 3 shows an example of a chromatogram obtained as a
result. Classification of the sample types was not possible
from the sample appearance or the appearance of the
chromatogram analysis results.

Fig. 1 Left: Properly

Refrigerated Sample (4 °C

Sample), Right: Sample

Exposed to 40 °C Environment

for 3 H (40 °C Sample)

Fig. 2 Appearance of GCMS-

QP™2020 + AOC-6000

Fig. 3 Example of Total Ion Chromatograms

Black: 4 °C Sample, Blue: 40 °C Sample

Picking/alignment of the deconvolution/peaks of the
chromatogram data were done using the mass spectrometry
data analysis software MZmine 2 (Ver. 2.32). The peak heights
were output as data, as this data is relatively unaffected by
waveform processing.
Because the dataset was extremely wide, comprising 9,318
peaks × 116 datafiles, we basically proceeded in the direction
of reducing unnecessary peak data (features) for the data
pretreatment.

 Data Pretreatment and Model Creation

1. Treatment of missing values

Although imputation of missing values in chromatogram
data is possible by adjusting the waveform processing
parameters to some extent, it is almost always impossible to
eliminate all missing values. In such cases, artificial
substitution by a simple calculation, separate regression
analysis, or the like is not considered advisable. Therefore, in
this study, all features, including missing values, that
occurred even once were deleted by using a commercial
spreadsheet program. As a result, it was possible to narrow
the features of the dataset to 200 peaks × 116 datafiles.

2. Data reading by Python and division into training

and test sets

After deletion of the missing values, the feature names, data
names, and similar information were input in the same
general spreadsheet program. The dataset was saved in a CSV
file, and was then imported to the Python console.

Here, the data names in each line (“Data001”, “Data002” . . .),
the label data in the “freshness” column (“1” or “0”, indicating
4 °C Sample or 40 °C Sample, respectively), and the other
feature data in each column (where the peaks are denoted by
RT followed by a serial number) were arranged. The values of
the features are the height of the respective peaks.
As described in Application News No. M276, this dataset was
split into a training set of 92 datafiles and a test set of 24
datafiles. The model was created using the training set, and
predictions were made using the test set. Division was done
using Stratified Shuffle Split so as to avoid skewing of the
label data.

0.0 5.0 10.0 15.0 20.0
-1.0

0.0

1.0

2.0

(x10,000,000)

In [1]:
import pandas as pd
data =pd.read_csv("Data.csv", header=0, index_col=0)
data.head(5)

Out [1]:
 freshness RT1.32_001 ... RT22.52_199 RT23.48_200
Data001 0 154497 ... 10100 9510
Data002 0 154356 ... 12702 10054
Data003 0 179444 ... 15774 11863
Data004 0 211854 ... 11123 9546
Data005 0 129346 ... 12236 10996

[5 rows x 200 columns]

Application
News

No. M282

3. Correlation between features

If a strong correlation exists between two features, one of the
features in which this correlation is recognized is deleted due
to occurrence of the problem of multicollinearity. For this
reason, the correlation coefficient between each pair of
features is checked.

Fig. 4 Heatmap of Correlation Coefficient Matrix for Pairs of

Features

Many parts are shown in blue and red, indicating correlation of
multiple features.

It can be understood that peaks with similar retention times
include many combinations with high correlation coefficients.
Here, when a combination of features had a correlation
coefficient of 0.8 or higher, one of the features was deleted.
This made it possible to narrow the number of features to 30.

4. Narrowing of features

After the number of features decreases, the content of each
feature is checked.

4-1. Distribution of values
The histograms of the values are checked, and select the
features that include less outliers and the distribution is
simple.

Fig. 5 Histograms of Features

Features that are outliers or have skewed distributions are excluded
from candidates because functioning as a marker is generally difficult.

4-2. Distribution of features by label
Features whose distribution differs by label have a high
possibility as marker candidates. The candidates are
normalized with z-score and validated by a boxplot or other
appropriate method.

In [2]:
def X_y_split(data):

y = data.iloc[:, 0]
X = data.iloc[:, 1:]
return X, y

In[3]:
def stratified_shuffle_split(X, y, test_size=0.2):

from sklearn.model_selection import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(test_size=test_size, random_state=0)
for train_index, test_index in sss.split(X, y):

train_X, test_X = X.iloc[train_index], X.iloc[test_index]
train_y, test_y = y.iloc[train_index], y.iloc[test_index]

return train_X, test_X, train_y, test_y

In[4]:
X, y = X_y_split(data)
train_X, test_X, train_y, test_y = stratified_shuffle_split(X,y,0.2)

In [5]:
import seaborn as sns
sns.heatmap(train_X.corr(), cmap="bwr", ¥
xticklabels=False, yticklabels=False)

In [6]:
def drop_correlating_columns (train_X, test_X, corr_value=0.8):

import numpy as np
corr1 = train_X.corr().abs()
corr2 = np.triu(corr1.values,1)
corr3 = np.asarray(np.where(corr2>corr_value))
corr4 = np.unique(corr3[1])
del_list = train_X.columns[corr4]
train_X_ncorr = train_X.drop(del_list, axis=1)
test_X_ncorr = test_X.drop(del_list, axis=1)
return train_X_ncorr, test_X_ncorr

In [7]:
train_X_ncorr, test_X_ncorr = drop_correlating_columns¥
(train_X, test_X, corr_value=0.8)

In [8]:
train_X_ncorr.head(5)

Out[8]
 RT1.32_001 RT3.98_003 ... RT19.56_155 RT22.52_199
Data050 135257 36010 ... 14516 13188
Data006 129535 34817 ... 7891 10228
Data032 219201 13716 ... 14183 12402
Data047 121548 42813 ... 9761 11610
Data055 90842 31363 ... 13666 13254

[5 rows x 30 columns]

In [9]:
def hist_features(data, num):

import matplotlib
import matplotlib.pyplot as plt
plt.figure(figsize=(8,16))
plt.subplots_adjust(wspace=0.2, hspace=1)
matplotlib.rc('xtick', labelsize=8)
matplotlib.rc('ytick', labelsize=8)
for i, col in enumerate(list(data.columns)[num:num + 60]):

plt.subplot(10, 3, i + 1)
plt.hist(data[col])
plt.title(col, fontsize=12)

return

In [10]:
hist_features (train_X_ncorr, 0)

Application
News

No. M282

Fig. 6 Boxplot of Peaks by Label

4-3. Contribution to model
A temporal model is created here using the current 30
features, and the contributions of each feature are calculated.
Since this study concerns the discovery of marker
compounds with a high contribution to target classification
by a binary discriminant model for the above-mentioned 4 °C
and 40 °C samples, a logistic regression type model was used,
and the hyperparameters “C” and “tol” were optimized by
grid search.

Fig. 7 Confusion Matrix of Predicted Label and True Label

Although the classification accuracy is 75% at this point, in
further work, we improved the accuracy of the model by
selecting features with higher contributions.
Although the coefficients in logistic regression can be
considered as contributions of each features, here
permutation importance algorithm is adopted in terms of its
higher generality in various type of models.

Since the number of samples is relatively small, a single try of
calculation may not reach true value. Therefore, several split
patterns of training / test set were tried, and their average
value was taken. Although the standard deviation was rather
large, as expected, it was possible to grasp the overall trend.

In [11]:
def boxplot (train_X, train_y):

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
plt.figure(figsize=(15,10))
for_sns = pd.concat([train_y, train_X], axis=1)
for_sns = pd.melt(for_sns, id_vars="freshness", var_name="features",

value_name="value")
sns.boxplot(x="features", y="value", hue="freshness", data=for_sns)
plt.xticks(rotation=90)
plt.tight_layout()
return

In [12]:
def standard_scaler_for_train_test (train_X, test_X):

from sklearn.preprocessing import StandardScaler
import pandas as pd
ss = StandardScaler().fit(train_X)
train_X_scaled = pd.DataFrame(ss.transform¥
(X=train_X), columns=train_X.columns, index=train_X.index)
test_X_scaled = pd.DataFrame(ss.transform¥
(X=test_X), columns=test_X.columns, index=test_X.index)
return train_X_scaled, test_X_scaled

In:[13]
train_X_ncorr_scaled,test_X_ncorr_scaled=¥
standard_scaler_for_train_test (train_X_ncorr, test_X_ncorr)
boxplot(train_X_ncorr_scaled, train_y)

In [14]:
def predict_with_logreg (train_X, test_X, train_y, test_y):

from sklearn.linear_model import LogisticRegression as logreg
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score as ac
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
parameters_logreg = {"C": [100, 10, 1, 0.1, 0.01],

"tol": [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]}
gscv = GridSearchCV(logreg(), parameters_logreg, cv=5)
gscv.fit(train_X.values, train_y.values)
best_params = gscv.best_params_
model_01 = logreg(C=best_params["C"],

tol=best_params["tol"], solver="lbfgs", random_state=4)
model_01.fit (train_X.values, train_y.values)
predict_y = pd.Series(model_01.predict(test_X.values),

index=test_y.index)
ac_score = ac(test_y, predict_y)
cm = confusion_matrix(test_y, predict_y)
plt.figure(figsize=(12,10))
ax = plt.subplot()

sns.heatmap(cm, annot=True,cmap="Blues",fmt="d",cbar=False)
sns.set(font_scale=2)
ax.set_xlabel("Predicted Label", fontsize=20)
ax.set_ylabel("True Label", fontsize=20)
print("accuracy score is {0}".format(ac_score))
return predict_y, model_01

In [15]:

predict_y_01, model_01 = predict_with_logreg¥
(train_X_ncorr_scaled, test_X_ncorr_scaled, train_y, test_y)

accuracy score is 0.75

In [16]:
def permutation_importances (train_X, train_y, iter=10):

from sklearn.linear_model import LogisticRegression as logreg
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from eli5.sklearn import PermutationImportance
import pandas as pd
import matplotlib.pyplot as plt
perm_imps = pd.DataFrame(columns = train_X.columns)
for i in range(iter):

tr_X, val_X, tr_y, val_y = train_test_split ¥
(train_X, train_y, test_size=0.2, random_state=i)
parameters_logreg = ¥
{"C": [100, 10, 1, 0.1, 0.01], "tol": [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]}
gscv = GridSearchCV(logreg(), parameters_logreg, cv=5)
gscv.fit(tr_X, tr_y)
best_params = gscv.best_params_
model_01 = logreg(C=best_params["C"], ¥
tol=best_params["tol"], solver="lbfgs", random_state=0)
model_01.fit (tr_X, tr_y)
perm = PermutationImportance(model_01, ¥
random_state=0).fit(val_X, val_y)
perm_imps = perm_imps.append ¥
(pd.Series(perm.feature_importances_, ¥
index=train_X.columns), ignore_index=True)

plt.figure(figsize=(12,8)).subplots_adjust(bottom=0.3)
plt.bar(x=train_X.columns, height=perm_imps.mean(), ¥
yerr=perm_imps.std())
plt.xticks(rotation=90)
plt.hlines(y=0, xmin=-0.5, xmax=train_X.shape[1]-0.5)
return perm_imps

In [17]:
perm_imps = permutation_importances ¥
(train_X_ncorr_scaled, train_y)

Application
News

No. M282

First Edition: Oct. 2019

For Research Use Only. Not for use in diagnostic procedure.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these
products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu.
Shimadzu disclaims any proprietary interest in trademarks and trade names used in this publication other than its own.
See http://www.shimadzu.com/about/trademarks/index.html for details.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its
accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the
use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject
to change without notice.

© Shimadzu Corporation, 2019

www.shimadzu.com/an/

Fig. 8 Values of Permutation Importance of Each Feature

Based on the study and trial-and-error process described
above, 10 features were selected at this time.

Because GC-MS scan data are used in this study, a qualitative
analysis of the candidate marker compounds is possible by
using library search and reference standards at this point in
time (Table 1).
Table 1 Peaks Selected in Study and Their Library Search Results

Peak #1 hit compound in library search results Variable
RT1.32_001 Trimethylamine x1
RT3.98_003 2-hydroxypropanamide x2
RT7.39_022 gamma.-n-Amylbutyrolactone x3
RT9.21_035 Uric acid x4
RT9.40_039 Lauryl acetate x5
RT12.46_083 9-Octadecen-1-ol x6
RT12.88_111 Hexadecanamide x7
RT14.15_116 Oleic Acid x8
RT16.73_139 Benzyl icosanoate x9
RT19.56_155 5-Cholestene x10

5. Feature engineering

In the logistic regression method, the output probability is
expressed by a first-order standard sigmoid function of the
features. A higher-order model of the features may be more
effective in some cases, depending on the dataset. However,
there is currently a tendency to avoid extreme high-order
models, which generally result in an increased calculation
load and overfitting.
Here, the result of a single division operation for each case was
used as a new feature “ratio of pairs of compound peaks,”
considering the fact that the data were chromatograms.

Because the number of features became excessive, features
values were selected arbitrarily based on the distribution and
contribution of the features, in the same manner as above.
The final features were as follows:

Fig. 9 Confusion Matrix of Predicted Label and True Label

Finally, it was possible to classify unknown samples with
precision of 91.67% by using this model. The equation
for predicting the probability P of label 1 is as follows.

The classification process is based on P ≥ 0.5 1, P < 0.5 0.
Table 2 Version Information

Python 3.7.3 seaborn 0.9.0
numpy 1.16.2 sklearn 0.20.3
pandas 0.24.2 eli5 0.8.2
matplotlib 3.0.3

GCMS-QP is a trademark of Shimadzu Corporation in Japan and/or
other countries.

In [17]:
feature_list_01 = pd.Series(["RT1.32_001", "RT3.98_003",¥
"RT7.39_022", "RT9.21_035", "RT9.40_039", "RT12.46_083",¥
"RT12.88_111", "RT14.15_116", "RT16.73_139", "RT19.56_155"])

In [18]:
train_X_dropped = train_X_ncorr_scaled[feature_list_01]
test_X_dropped = test_X_ncorr_scaled[feature_list_01]

In [19]:
def features_ratio (train_X, test_X):

import pandas as pd
from sklearn.preprocessing import StandardScaler
train_X_r = train_X.copy()
for col1 in train_X.columns:

for col2 in train_X.columns:
train_X_r[col1+"_"+col2] = train_X[col1] / train_X[col2]

test_X_r = test_X.copy()
for col1 in test_X.columns:

for col2 in test_X.columns:
test_X_r[col1+"_"+col2] = test_X[col1] / test_X[col2]

ss = StandardScaler().fit(train_X_r)

train_X_r = pd.DataFrame(ss.transform(train_X_r),¥
columns=train_X_r.columns, index=train_X_r.index)

test_X_r = pd.DataFrame (ss.transform(test_X_r), ¥
columns=test_X_r.columns, index=test_X_r.index

return train_X_r, test_X_r

In [20]:
train_X_r, test_X_r = features_ratio (train_X_dropped, ¥
test_X_dropped)

In [21]:
feature_list_final = pd.Series(["RT9.21_035",¥
 "RT9.21_035_RT7.39_022", "RT3.98_003_RT9.21_035",¥
 "RT3.98_003_RT16.73_139", "RT9.40_039_RT19.56_155",¥
 "RT1.32_001_RT9.21_035", "RT16.73_139",¥
 "RT14.15_116_RT1.32_001", "RT9.21_035_RT19.56_155",¥
 "RT7.39_022_RT9.40_039"])
In [22]:
train_X_final = train_X_r[feature_list_final]
test_X_final = test_X_r[feature_list_final]
In [23]:
predict_y_final, model_final = predict_with_logreg¥
(train_X_final, test_X_final, train_y, test_y)

accuracy score is 0.9166666666666666

P = (1 + exp (1.19 * x 4 + 1.22 *
x4
x3

 - 0.21 *
x2
x4

 - 1.32 *
x2
x9

+ 1.72 *
x5

x10
 - 0.50 *

x1
x4

 + 0.18 * x9 + 1.25 *
x8
x1

+ 0.16 *
x4

x10
 - 0.07 *

x3
x5

))-1

