

Demonstration of Metabolomics for Evaluation of Environmental Toxicants

Ai Jia¹, Fei Zhao², Bingfeng Dong¹, Walter Klimecki², Shane Snyder¹

1756

1729

1756

1750 1726

1758

1745

1762

1734

1739

1719

Further

biological

pathway validation

Introduction

It has been observed that low level exposure to arsenite (75ppb) is sufficient to induce aerobic-glycolysis in cultured human primary lung epithelial cells (BEAS-2B) [1]. With the help of modern analytical instrument, especially high resolution mass spectrometry (QTOF) , we are trying to do both global and target driven analysis of cellular metabolites to further explore where and how arsenite is reacting within the cells.

Experimental Details

	<u>Experimental Details</u>					
•		Group	Group	Group	Group	
		(V)	(VAs)	(Sh)	(ShAs)	
`all	Cells	Lung epithelial cell BEAS-2B				
Cell Exposure	Knockdown	-	-	H1F-1A	H1F-1A	
	Dose		1uM Arsenite		1uM Arsenite	
	Exposure		4 weeks		4 weeks	
	Replicates	4	4	4	4	
	Cell counting	Υ	Υ	Υ	Υ	
Research Diagram	Methoxyla (derivatiza	Extraction With Me Methoxylamine (derivatization) Cer MSTFA/1%TMCS		RT & m/z alignment Data normalization grouping		
14	(derivatiza		V. ′ОТОF	Sta	PCA atistic Analysis Clustering	
03- 03- 07- 08- 03- 03- 03- 03- 03- 03-	Data [Deconvolu	ition	Metabolite	dentification Profiling &	

Agilent 7200 GC-QTOF Agilent 6540 LC-QTOF

Instrumentation

Results and Discussion

Deconvolution (GC) or molecular splitless Cell_Sh2.D Cell V splitless Cell Sh3.D feature extraction (LC) first; solitless Cell Sh4.D plitless Cell ShAs1.D RT (0.1min) and mass alignment Gel Edward Cell VAs (15ppm) were conducted in MPP; Cell Edited Fiehn, NIST (GC) and METLIN (LC) Medium V pitless Cell_V2.D were used for database screening Cell Editoral plitless Cell. V3.D Medium VAs olitiess Cell_VAs1.D Cell Extract spitiess Cell VAs 2.D

PCA to remove outliers FC>2.0, Moderated T-test (p<0.05) Venn Diagram (67% presence)

	Metabolites	Regulation	RT	Mass
	L-(+) lactic acid	down	6.779667	190.085
	tyrosine 2	down	17.8205	218.1104
s	L-valine	down	9.086	144.1205
5	3-phosphoglyceric acid	down	16.411	317.0345
	alpha-glucosamine 1-phosphate	down	16.7002	56.03719
	citrulline	up	16.638	157.0868
	tyrosine	up	17.8205	218.1104
	L-alanine	up	7.439	116.0896
	L-leucine	up	8.254	86.09671

References

Metabolite:

List

[1] Zhao, F., Severson, P., Pacheco, S., Futscher, B.W., Klimecki, W.T., 2013. Arsenic exposure induces the Warburg effect in cultured human cells. Toxicology and applied pharmacology.

<u>Acknowledgements</u>

For Research Use Only. Not for use in diagnostic procedures.