1.9 Analysis of kerosene (1) - GCMS ## Explanation The primary products of petroleum - gasoline, kerosene, light oils etc - are hydrocarbon mixtures refined through distillation. A Gas Chromatography Mass Spectrometer (GCMS) is used for qualitative determination, since measurement by Gas Chromatography (GC) using a capillary column produces a large number of peaks. Fig. 1.9.1 is the TIC of kerosene by a non-polar column (methyl silicon). Chemical compounds up to toluene can be seen because of the small amount of gasoline contained in this kerosene. Fig. 1.9.2 is a TIC chromatogram by a polar column. This kerosene is standard and compounds up to C_8 -paraffin are not contained. As shown in Fig. 1.9.3 (polar column), paraffin hydrocarbons from C_9 to C_{16} are contained, with C_{10} and C_{11} as the main components. A lot of aromatic hydrocarbons are contained as well. ## Analytical Conditions Model : Shimadzu GCMS-QP1000EX Column ① : CBJ1 0.25mm $\times 30$ m i.d. df=0.25 μ m Column Temp. : 40°C (2min)-220°C (5°C/min) Column (2) : CBP20 0.25mm $\times 30$ m i.d. df=0.25 μ m Column Temp. : 80°C (2min)-5°C/min-150°C -15°C/min-200°C Carrier Gas : He 50kPa Injector Temp. : 300°C Interface Temp. : 200°C Split : 1:50 Fig. 1.9.1 TIC chromatogram by a non-polar column Fig. 1.9.2 TIC chromatogram by a polar column Fig. 1.9.3 Mass chromatogram by a polar column ## 1.9 Analysis of kerosene (2) - GCMS Fig.1.9.4 is the mass chromatogram obtained by analysis with a nonpolar column. C₃-alkylbenzene is eluted from in between the main components of paraffin, n-nonane (C₉H₂₀) and n-decane (C₁₀H₂₂). Fig. 1.9.5 is the mass chromatogram obtained by a polar column (PEG). The component ratio of kerosene A and kerosene B differ somewhat, and the C₃-alkylbenzene has moved to between n-undecane (C₁₂H₂₆) and n-tetradecane (C₁₄H₃₀), and there is less interference by paraffin hydrocarbons. Fig. 1.9.4 Mass chromatogram by a non-polar column Fig. 1.9.5 Mass chromatogram by a polar column As indicated in Fig. 1.9.6, there are 8 types of C₃-alkylbenzene isomers. Identification from the mass spectra becomes extremely difficult. In this case, if a capillary column with good separation is used, C₃-alkylbenzene can be completely separated, with the exception of m,p-ethylmethylbenzene, making identification from a mass chromatogram easy. Fig. 1.9.6 Mass spectra of C3-alkylbenzene