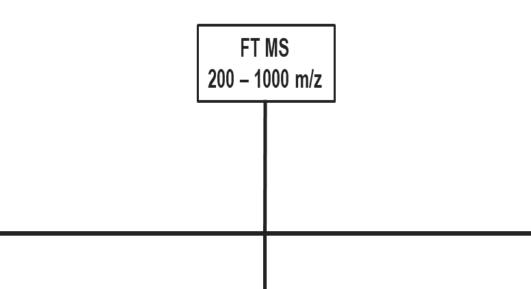
Metabolomics of tea

High quality curated HRAM MSⁿ spectral libraries and real time library search for the confident annotation of flavonoids in tea


Rahul Deshpande¹, Bashar Amer¹, Daniel Hermanson¹, Brandon Bills¹, Reza Jafari², Pedram Rafeie², Susan Bird¹, Elizabeth Crawford³ and Andreas Hühmer¹ - ¹Thermo Fisher Scientific, San Jose, California, USA, ²MetaSci Inc, Toronto, ON, Canada, ³Thermo Fisher Scientific GmbH, Dreieich, Germany

Acquire MSⁿ

Abstract

Purpose: Compound class specific deep scan for confident annotation of relevant analytes using a high quality curated High Resolution Accurate Mass (HRAM) MSⁿ spectral library in conjunction with Real Time Library Search (RTLS).

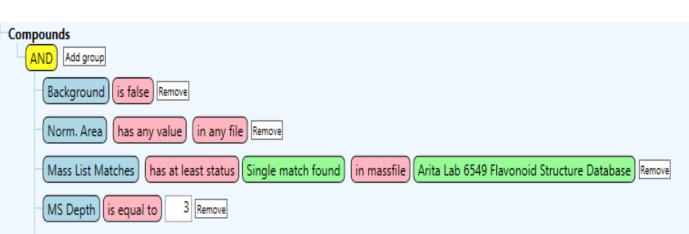
Methods: A Thermo Scientific[™] Vanquish[™] Horizon UHPLC system coupled to a Thermo Scientific[™] Orbitrap IQ-X[™] Tribrid[™] mass spectrometer is used for collecting all MS and MSⁿ data. For data acquisition, MS/MS is always collected with precursor ions detected in the survey MS scan within 1.2 second cycle time. High order MSⁿ (³⁻⁵) is collected using the built-in spectral library creation templates using LC-MS . The generated MSⁿ tree data are processed using Thermo Scientific[™] Mass Frontier[™] 8.0 and Thermo Scientific[™] Compound Discoverer[™] 3.3 software. Flavonoid standards were used for the library creation and putative flavonoids were annotated in tea extract. Thermo Scientific[™] mzVault[™] 2.3 software was used for creating the spectral library to be used for RTLS. Figure 2. Modified spectral library data acquisition process utilizing different fragmentation methods (HCD, CID and UVPD).

FT HCD MS²

MS/MS spectra are searched against offline mzVault library

in real time. If the spectra passes the criteria subsequent

Figure 3. Real Time Library Search on IQ-X MS.


MSⁿ is triggered for improved annotation.

Spectral library

Compound Discoverer 3.3 software was used to process the LC-MS data from the standards. The spectral data with the various fragmentation strategies from the standards was transferred to a mzVault library. The mzVault library containing the spectral fragmentation information of the flavonoid standards was populated with the structural and chemical information of individual compounds. This library was used for the RTLS on the instrument.

Figure 5. mzVault library showing the spectra for an

Figure 8. Filter applied to Compound Discoverer 3.3 software data t.o extract only relevant compounds for utility of RTLS

Results: Use of a standard spectral library and RTLS allows for more unknown flavonoid identification from natural products. Nearly 100 additional putative flavonoids were annotated using this new workflow for tea extracts.

Introduction

Confident compound annotation is essential for translating untargeted metabolomics data into meaningful biological information. Mining of relevant information from untargeted metabolomic data remains a challenge. Local mass spectral libraries consisting of MSⁿ data from authentic standards provide the opportunity to confidently annotate known and related unknown compounds in biological samples. Here we describe the process of creating and curating a high-quality spectral library of high-resolution accurate mass data using authentic flavonoid standards and the built-in library builder method template on the Orbitrap IQ-X Tribrid Mass Spectrometer (MS) and its utility for the confident annotation of flavonoids in biological samples using Real Time Library Search (RTLS) to automatically guide MSⁿ data acquisition on the fly.

Materials and methods

Sample preparation

The Flavonoid Library consisting of 40 standards was obtained from MetaSci (Toronto, ON, CA). The library consists of 4 vials each containing 10 authentic standards which could be directly injected for LC-MS analysis. Three varieties of green tea, black tea and herbal tea were obtained from the local market. Three replicates of each were extracted using 240 mL of hot water in commercially available disposable coffee cup. For blank, hot water without tea in similar coffee cup was used. Pooled samples were prepared by adding 100 μ L of each extract. This pooled sample was used for QC.

IQ-X

Sample

FT UVPD MS²

example standard flavonoid.

Meta	Sci_Fla	vanoids_RT											
Compound List												Library Statistics	
1		🖏 Entry No 🔺	3 Compound	1		$\gamma_{\rm b}$ Synonyms		5	Formula 👘	CASID 🙀 InChil	(ey	§ ^	Number of Compounds : 29
•	0		11 Piceid			3,4'-5-Trihydrox	/stilbene-3-beta-D-	glucopyranoside	C20H22O8	HSTZN	IXCBWJGKHG-CUYWLFD	(BI	Number of Spectra : 365
•			12 Diosmin						C28H32O15	GZSOS	UNBTXMUFQ-YFAPSIMEE	W	Number of Selected Compounds : 0
đ	6	Spectrum ID 😗	Compound ID	$\gamma_{\rm p}$ Scan Filter $\gamma_{\rm p}$	Retention Time	Scan Number 🖏	Precursor m/z %	Neutral Mass 👔	Collision Ener	gy 🖏 Polarity 🕅	Fragmentation Mode	V) lot	Number of Selected Spectra : 0
	E)	166		12 FTMS + c ESI Full ms2 609.1793@cid30.00 [398.00-620.00]	7.120	2107	609.1793	608.1741	30.0	+	CID	ESI	Read Only : No
		167		12 FTMS + c ESI Full ms2 609.1793@uvpd100.00 [64.00-620.00]	7.120	2108	609.1793	608.1741	100.0	+	UVPD	ESI	Database Version : 5
	٥	168		12 FTMS + c ESI Full ms2 609.1793@hcd125.00 [64.00-620.00]	7.120	2109	609.1793	608.1741	125.0	٠	HCD	ESI	
		169		12 FTMS + c ESI Full ms2 609.1793@hcd67.50 [40.00-620.00]	7.120	2110	609.1793	608.1741	67.5	+	HCD	ESI	
		170		12 FTMS + c ESI Full ms2 609.1793@hcd30.00 [40.00-620.00]	7.120	2111	609.1793	608.1741	30.0	+	HCD	ESI	
	۵	171		12 FTMS + c ESI Full ms2 609.1807@cid30.00 [398.00-620.00]	7.120	2123	609.1807	608.1741	30.0	+	CID	ESI	
,	٥	172		12 FTMS + c ESI Full ms2 609.1807@uvpd100.00 [64.00-620.00]	7.120	2124	609.1807	608.1741	100.0	+	UVPD	ESI	
		173		12 FTMS + c ESI Full ms2 609.1807@hcd125.00 [64.00-620.00]	7.120	2125	609.1807	608.1741	125.0	+	HCD	ESI	
	Ē	174		12 FTMS + c ESI Full ms2 609.1807@hcd67.50 [40.00-620.00]	7.120	2126	609.1807	608.1741	67.5	+	HCD	ESI	
	٥	175		12 FTMS + c ESI Full ms2 609.1807@hcd30.00 [40.00-620.00]	7.120	2127	609.1807	608.1741	30.0	•	HCD	ESI	
۲			13 (±)-Naring	tenin		(+/-)-Naringeni	1		C15H12O5	FTVWI	RXFELQLPI-UHFFFAOYAM		
	Ē		14 Hesperetin	1					C16H14O6	AIONO	UUJZLIMTK-AWEZNQCLB	H .	

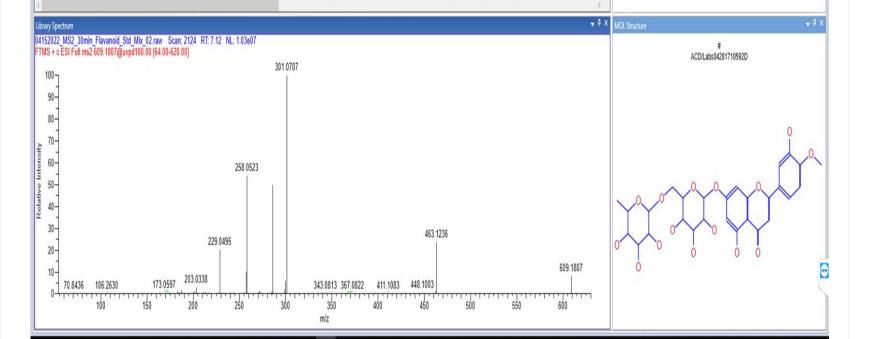
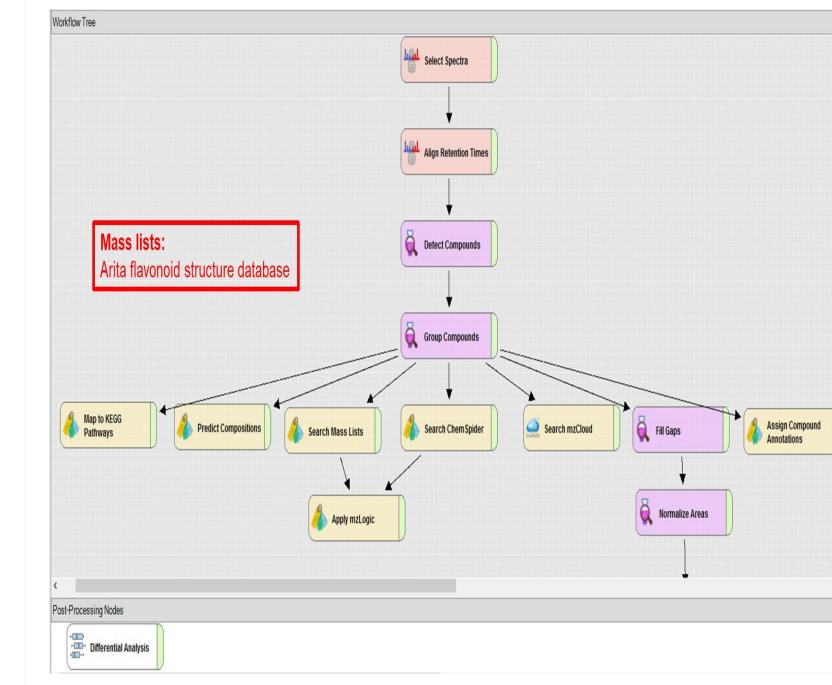
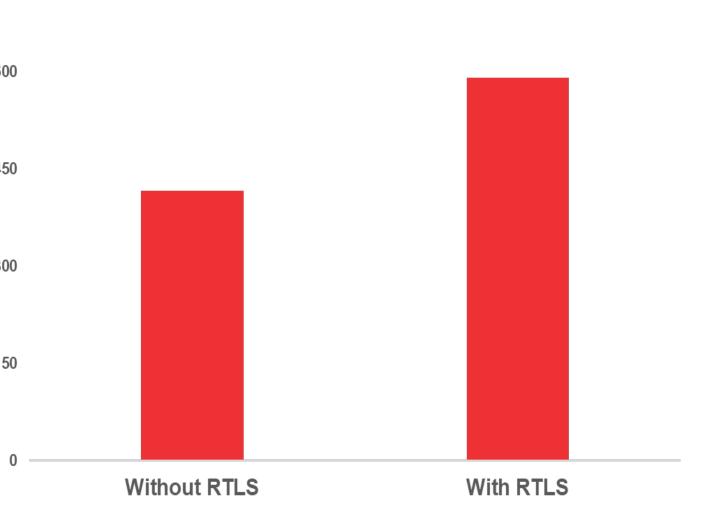



Figure 6. Compound Discoverer software workflow to annotate structures of putative flavonoids, which are identified based on the sub-structure match with flavonoid references in the mzCloud library and carrying out the statistical analysis.



Add property

750

Figure 9. Filtered data from Compound Discoverer software showing compounds in the Arita Flavonoid Database which had a subsequent MS³ fragmentation (putative flavonoids).

RTLS for Compound Specific Deep Scan

HPLC conditions

A Thermo Scientific[™] Vanquish[™] UHPLC system performed separations. The column was a Thermo Scientific[™] Accucore[™] Vanquish[™] C18+ UHPLC column (2.1 x 150mm, 1.5µm) that operated at 55 °C and a flow rate of 200 µL/min.

Mobile Phase: (A) 0.1% (v) formic acid (FA) water (B) 0.1% (v) FA in methanol

HPLC Gradient:	Time	A%	B%
	0.00	100	0
	3.00	50	50
	9.00	2	98
	13.00	2	98
	13.10	100	0
	15.00	100	0

The injection volume was 2 μ L.

Mass spectrometer

Orbitrap IQ-X Tribrid Mass Spectrometer was used.

MS conditions-spectral library building

The inbuilt template for library building on the IQ-X MS using LC-MS was used for the flavonoid standards. The template allows for the collection of MSⁿ spectral data. Data was also collected with a modified template allowing for collection of MS² data utilizing

Cosine Score

Confidence Score

Deep Scan AcquireX acquisition workflow was used for analysis. This workflow automatically creates an exclusion list from background ions (Blank) and an inclusion list of metabolites of interest from the reference sample (Pooled) with iterative updating in between each injection after performing MS^2 . Full scan MS^1 (200-1000 *m/z*) was performed on all the tea samples.

Figure 4. Thermo Scientific[™] AcquireX Deep Scan mode for intelligent data acquisition to maximize the number of relevant compounds interrogated by MS/MS.

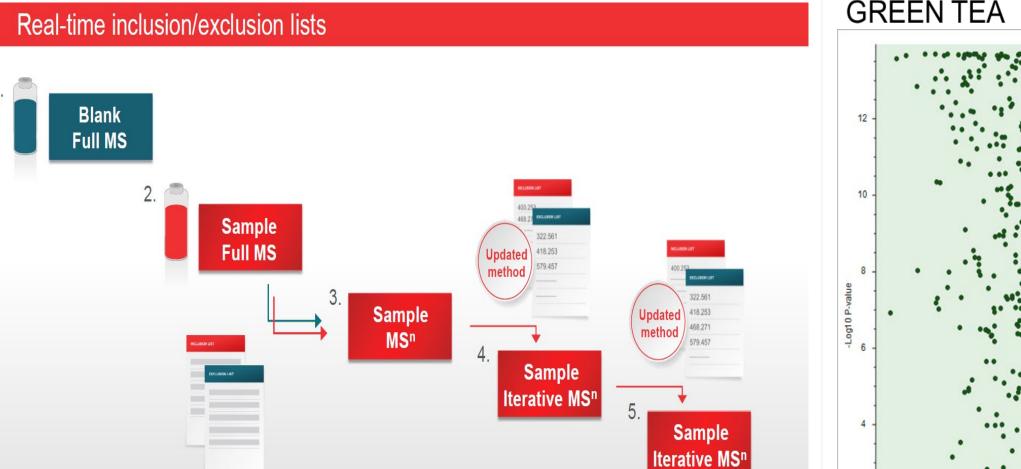
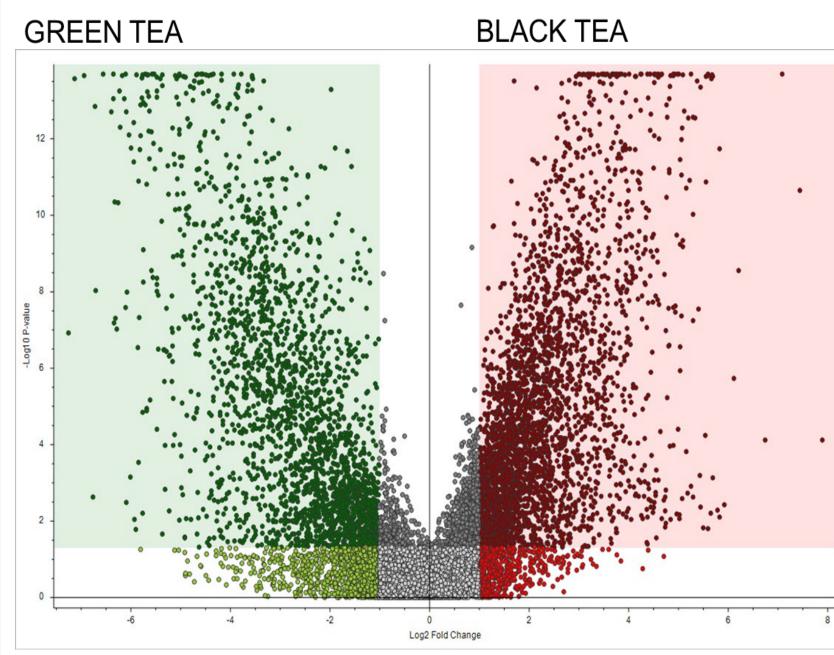



Figure 7. Volcano plot of the metabolomics data showing all the compounds detected by Compound Discoverer 3.3 software. The x-axis is the mean ratio fold-change (plotted on a log² scale) of the relative abundance of each metabolite between green tea and black tea

Two major challenges in untargeted metabolomics are:

- 1. Extracting biologically relevant information
- 2. Confident compound annotation with structural information

The workflow described here addresses both challenges by utilizing RTLS. RTLS can be used to identify and confidently annotate analytes belonging to certain biological classes. The annotation is done by getting structural information utilizing MSⁿ and multiple fragmentation methods in combination with using Compound Discoverer 3.3 software.

Conclusions

- A workflow for utilization of RTLS is for compound class (flavonoids) specific identification of analytes in biological matrices (Tea) is described. It involves
- 2.1. Creation of spectral library using authentic flavonoid standards.
- 3.2. Utilizing the created spectral library for RTLS of related compounds in biological matrices (tea).
- 4. More putative flavonoids were identified in tea using RTLS in comparison with samples without acquired without RTLS.
- 5. The challenge of obtaining deep and relevant metabolome coverage can be addressed using intelligent data acquisition strategies such as AcquireX in combination with RTLS.

Trademarks/licensing


© 2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that

different fragmentation strategies (HCD, CID and UVPD).

MS conditions-RTLS

The inbuilt template for using RTLS on IQ-X MS (named Met-IQ) was used for data acquisition on the pooled sample. The template allows for similarity search of compounds present in the library and a trigger for MS³ for compounds similar to those in the library.

Figure 1. A Vanquish Horizon UHPLC system coupled to a Orbitrap IQ-X Tribrid mass spectrometer

Automatically generated Inclusion and Exclusion Lists

Results

Data processing

Compound Discoverer 3.3 software was used to process the LC-MS data from the samples. Differential analysis and compound annotation revealed relative differences between the various tea samples. Several annotation tools are available in the Compound Discoverer 3.3 software including database searching and spectral library matching against the mzCloudTM spectral library at the MSⁿ level. In parallel it has the ability to search custom mass lists with corresponding chemical structures. Here the data was processed using the Arita Flavonoid Database which has the mass and structural information of around 6500 Flavonoids.

Data filtering

The data obtained from Compound Discoverer 3.3 software was filtered for showing the utility of RTLS to trigger more relevant compounds (structurally similar to flavonoids) for MSⁿ fragmentation. The filter applied extracted only compounds in the Arita Flavonoid Database which had a subsequent MS³ fragmentation.

Putative flavonoids with MS³ spectra

591 putative flavonoids had triggered an MS3 spectra when RTLS was used compared to 416 putative flavonoids with MS3 spectra without the use of RTLS.

might infringe the intellectual property rights of others.