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OVERVIEW
AIM:Improved coverage and quantification in proteomic analysis using differential ion mobility.
METHODS: A novel high field asymmetric waveform ion mobility (FAIMS) interface was 
coupled to an Orbitrap Fusion Tribrid (Thermo Fisher Scientific). Isobaric labeling of peptides 
was used to profile dynamic changes in protein abundance upon heat shock.
RESULTS: LC-FAIMS-MS2 provided 2.5-fold higher number of quantifiable peptides 
compared to the SPS-MS3 strategy for TMT labeling with comparable fold changes. 
measurements.
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Fig.1: Experimental workflow. (a) All experiments were performed using LC-MS/MS on a Orbitrap tribrid Fusion mass 
spectrometer with a two hours LC gradient, 500ng/injection with 3s cycles. For SPS-MS3, 10 notches were selected2. 
Without FAIMS we did 3 replicates, with FAIMS we combined CVs together to cover in 3 injections the whole transmission 
range. (b) Optimised FAIMS method shows little overlap between the different injections and comparable number of 
identification. (c) Yeast and HEK293 cell extracts were reduced, alkylated and digested with trypsin prior to labeling with 
TMT 6-plex. (d) HEK293 cells were incubated at 43°C, and collected at 1h intervals up to 9 h prior to digestion and TMT 
10-plex labeling.
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Isobaric labeling of peptides provides a convenient approach to enhance the throughput of 
quantitative proteomic measurements, and can be achieved using different reagents including 
Tandem Mass Tag (TMT) labeling. However, the fragmentation of co-eluting isobaric ions can 
lead to chimeric MS/MS spectra and distorted reporter ion ratios. Synchronous precursor 
selection (SPS)-based MS3 method can alleviate this problem, though this approach can 
result in a reduced number of quantifiable proteins compared to traditional MS2 method. Here, 
we compared the analytical merits of SPS-MS3 to that of LC-MS/MS that combines a new high 
field asymmetric waveform ion mobility spectrometry (FAIMS) interface. LC-MS/MS 
experiments performed using FAIMS enhanced peak capacity and sensitivity while reducing 
peptide co-fragmentation thus extending the coverage of multiplex proteomic measurements1. 

• The New FAIMS interface provides significant advantages in terms of   
instrument speed compared to the old generation FAIMS,  allowing in three 
injections to cover the CV transmission range with optimized CV distribution 
(Fig.1a and Fig.1b).

• Using a known two-proteome model of Yeast - Human peptides (Fig.1b), 
FAIMS MS2 improves peak capacity3 and reduces the occurence of 
co-fragmentation of isobaric precursors with precision comparable to the SPS 
MS3 approach (Fig.2).

• The dynamic changes of HEK293 cells exposed to hyperthermia was 
analyzed with total 1.5ug of peptides. FAIMS increases the number of 
quantifiable TMT-labeled peptides by 3-fold and proteins by 2-fold compare to 
the SPS MS3-based strategy for LC-MS/MS analyses (Fig.3b). 

• Proteins showing changes in abundance upon heat shock were separated 
in 4 groups: early up- or down-regulation and late up- or down-regulation and 
showed similar trends for FAIMS and SPS (Fig.3c-d). 

• Hyperthermia affects several key cellular processes that impact protein 
homeostasis, such as responses to unfolded proteins (Fig.4).
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Fig.2: Precision of TMT quantification (a) To determine the extent of co-fragmentation using FAIMS, we labeled separate aliquots of yeast and HEK293 tryptic digests with TMT reagents, and mixed those aliquots to obtain final TMT ratios of 1:1.5:1:0:0:0 for 
yeast and 0:1:1.6:4:1.6:1 for human extracts. Human peptides were not labeled with TMT-126, whereas channels TMT-129 to TMT-131 were not used for yeast peptides. This labeling scheme facilitated the identification of co-fragmentation arising from 
interfering peptides of each species. 70% of all unique sequences in SPS-MS3 were also quantified in FAIMS-MS2. (b) Summary table comparing MS analysis between SPS-MS3 (middle column) and FAIMS-MS2 (right column) for identified and quantified 
features. (c) Distortion of TMT ion ratios and extent of ion contamination for the two-proteome model analysed with SPS-MS3 (grey) and FAIMS-MS2 (green). Box plot and (d) frequency distribution of TMT reporter ion ratios normalized using TMT-126 and 
TMT-131 for for unique yeast and human peptide sequences, respectively.

Fig.3: FAIMS improves TMT quantification of the human proteome. HEK293 cells were exposed to a 43˚C heat stress for up to 9 h in 1h increments. (a) Cumulative number of unique peptides 
identified as a function of repeat injections for SPS-MS3 (black) or CV stepping program with FAIMS-MS2 (green). Overlap in peptide and protein identifications between the two methods are 
depicted in Venn diagrams to the right of the curves.(b) Summary table comparing MS analysis parameters between SPS-MS3 (middle column) and FAIMS-MS2 (right column). (c) Dynamic 
clusters for heat shock regulated proteins without FAIMS (left) and with FAIMS (right). The grey lines show the relative fold changes of the individual proteins with high membership (≥0.9), the 
blue lines the average fold changes of all the proteins in the corresponding cluster. (d) Corresponding heat map for all proteins in the clusters from (c). (e) Representative dynamic profile of 
HSPA1A (assigned to a late up regulation) and LRPPRC (assigned to a late up downregulation) for SPS-MS3 (grey) and FAIMS-MS2 analysis (green), highlighting virtually identical 
profiles/quantifications for both acquisition methods. (f) Scatterplot representations for the common dynamic (c) proteins at time point 8h.

CONCLUSION

Fig.4: Heat stress affects several key cellular processes  
that impact protein homeostasis. (a) Interaction network 
for upregulated proteins (green) and down regulated 
proteins (red) based on the clustering shown in Figure 
3c. Proteins that belong to enriched GO-terms are 
outlined by coloured shapes. (b) Cellular processes 
affected in early and late response to heat shock. 

• A compact FAIMS interface combined with an Orbitrap tribrid mass 
spectrometer improves accuracy and coverage in multiplex quantification.

• TMT-based MS2 quantitation made possible with FAIMS enabled a 2-3 
fold gain in identification with high TMT ratio accuracy  compared to SPS-MS3 
quantitation. 

REFERENCES

4260 238281814

SPS-MS3

with
FAIMS-MS2

         unique peptides

This work was carried out with financial support from the Natural Sciences and Engineering 
Research Council and the Genomic Applications Partnership Program (GAPP) of Genome 
Canada. IRIC receives infrastructure support from IRICoR, the Canadian Foundation for 
Innovation, and the Fonds de Recherche du Québec - Santé (FRQS). IRIC proteomics facility 
is a Genomics Technology platform funded in part by the Canadian Government through 
Genome Canada.


