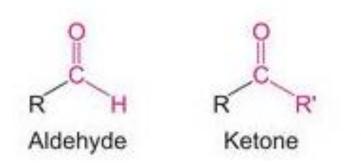


Poster Reprint

ASMS 2023 Poster number TP 730

Analysis of DNPH-derivatized Aldehydes and Ketones using Agilent iQ Single Quadrupole LCMS


Nikolas Lau¹, Greg Thompson², Sue D'Antonio³

¹Agilent Technologies, Wood Dale, IL

²Agilent Technologies, Alpharetta, GA

³Agilent Technologies Cedar Creek , TX

Introduction

Aldehydes and ketones are important compounds in the chemical industry. However, these compounds can be hazardous when released into the environment. Many chemical plants, industrial hygienists and air monitoring agencies perform quantitative analysis on air samples.

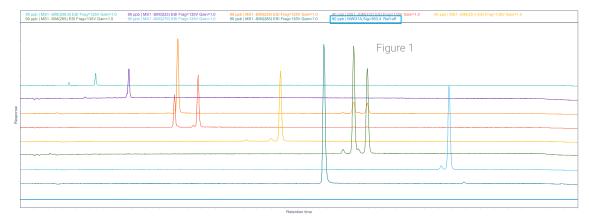
Typically, this analysis is done by HPLC with UV detection since the compounds have excellent chromophores after derivatization. The typical UV wavelength being 310 nm. This method works extremely well for standards. When an unknown peak appears in a chromatogram, that peak needs to be identified as a hazardous or non-hazardous compound. Also, if a contaminant does not have an absorbance at UV wavelength 310, it may go undetected.

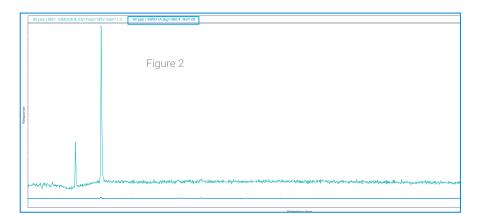
Therefore, this set of experiments, will be able used to lower the Limit of Detection (LOD) and Limit of Quantitation (LOQ) and detect interferences and unidentified peaks in real world samples.

Experimental

In this set of experiments, we ran 3 replicates of standard, TO11/IP-6A Aldehyde/Ketone-DNPH Mix from 1 ppb to 1000 ppb to create large calibration curves. The chromatography removed the acetone for the solvent Acetonitrile/Methanol and added formic acid to add ionization. We also were given an air filter sample cartridge. This cartridge was extracted with pure Acetonitrile and run on a C18 column. A diode array detector was run in series with the LCMS. Standards and samples were run with both SIM and Scan mode. We were able to create a library with known compounds of interference. We were able to both identify interfering compounds, and to quantitate in the same analytical run.

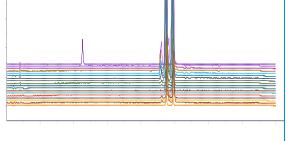
Parameter	Settings					
Analytical Column	Agilent Poroshell EC C18, 3.0 x 150mm, 1.9 μm Part Number 693675-302					
Column Temperature	30.0° C					
Injection Volume			0.5 µL			
Run Time	40.00 minutes					
Post-run Time	5.00 minutes					
Flow Rate	0.50 mL/minute					
Mobile Phase A	Water					
Mobile Phase B	Acetonitrile					
Mobile Phase C	Methanol					
Mobile Phase D	0.1% Formic Acid in Water					
Quaternary Pump Gradient	<u>Time (min)</u> 0.00 14.50 30.50 34.50 36.00	E low (mL/min) 0.50 0.50 0.50 0.50 0.50 0.50	<u>%A</u> 50.00 42.00 28.00 28.00 00.00	<u>%B</u> 22.50 26.50 33.50 33.50 45.00	<u>%C</u> 22.50 26.50 33.50 33.50 45.00	<u>%D</u> 5.00 5.00 5.00 5.00 5.00

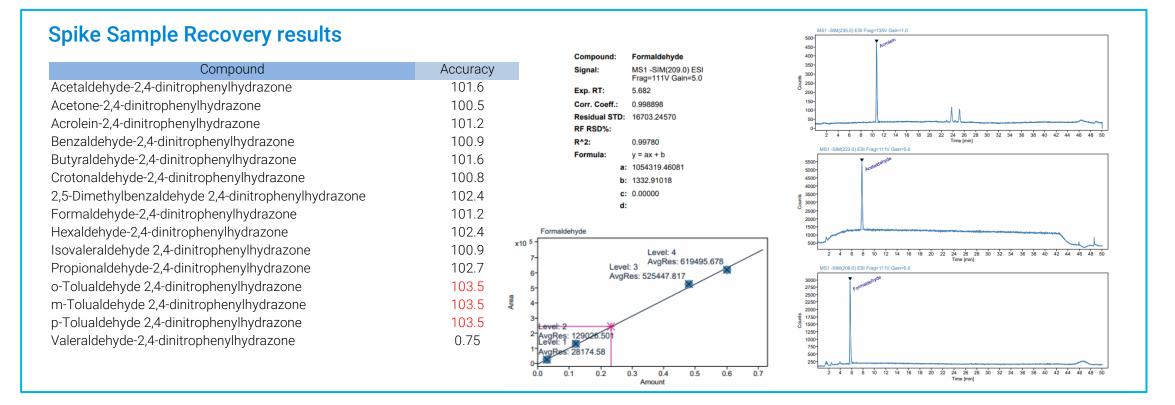

UV Wavelength (nm)	360
MS Ion Source	Electrospray
MS Mode	Auto Acquire (Negative)
Scan Type	Scan and Single Ion Monitoring (SIM)


*This run time is significantly reduced if you do not need DAD data. In this poster we needed to compare UV to MSD results.

2

LOD and LOQ Comparison with Traditional UV Method


Compound	m/z	LOD MS (ppb)	LOQ MS (ppb)	LOQ UV (ppb)
Acetaldehyde-2,4-dinitrophenylhydrazone	223	3	6	45
Acetone-2,4-dinitrophenylhydrazone	227	1.05	1.5	45
Acrolein-2,4-dinitrophenylhydrazone	235	1.05	1.5	45
Benzaldehyde-2,4-dinitrophenylhydrazone	285	0.75	3	90
Butyraldehyde-2,4-dinitrophenylhydrazone	251	0.9	4.5	75
Crotonaldehyde-2,4-dinitrophenylhydrazone	249	6	(9)	90
2,5-Dimethylbenzaldehyde 2,4-dinitrophenylhydrazone	313	3	6	90
Formaldehyde-2,4-dinitrophenylhydrazone	208.8	4.5	(9)	12
Hexaldehyde-2,4-dinitrophenylhydrazone	279	0.75	4.5	90
Isovaleraldehyde 2,4-dinitrophenylhydrazone	265	0.9	3	75
Propionaldehyde-2,4-dinitrophenylhydrazone	237	1.05	4.5	60
o-Tolualdehyde 2,4-dinitrophenylhydrazone	299	1.05	4.5	90
m-Tolualdehyde 2,4-dinitrophenylhydrazone	299	1.05	4.5	90
p-Tolualdehyde 2,4-dinitrophenylhydrazone	299	1.05	4.5	90
Valeraldehyde-2,4-dinitrophenylhydrazone	265	0.75	1.5	75



The highest LOQ value of the LCMS data, 9 ppb, is an order of magnitude larger than the level of concentration where all the peaks in the UV can be seen (90 ppb). Figure 1 shows an overlay of the UV chromatogram the darker blue chromatogram on the bottom at 90 ppb with the SIMS. The LCMS gives significantly more response. Figure 2 shows an overlay of the UV chromatogram and the SIM 208 in the same scale. Formaldehyde, which has the lowest LOQ, is still significantly lower in magnitude.

Compound	m/z	Linearity	
Acetaldehyde-2,4-dinitrophenylhydrazone	223	0.999	
Acetone-2,4-dinitrophenylhydrazone	227	0.999	
Acrolein-2,4-dinitrophenylhydrazone	235	0.999	
Benzaldehyde-2,4-dinitrophenylhydrazone	285	0.999	Figure 3
Butyraldehyde-2,4-dinitrophenylhydrazone	251	0.999	1138
Crotonaldehyde-2,4-dinitrophenylhydrazone	249	0.999	od sop
2,5-Dimethylbenzaldehyde 2,4-dinitrophenylhydrazone	313	0.999	ш. -
Formaldehyde-2,4-dinitrophenylhydrazone	208.8	0.999	
Hexaldehyde-2,4-dinitrophenylhydrazone	279	0.999	
Isovaleraldehyde 2,4-dinitrophenylhydrazone	265	0.999	
Propionaldehyde-2,4-dinitrophenylhydrazone	237	0.999	
o-Tolualdehyde 2,4-dinitrophenylhydrazone	299	0.999	
m-Tolualdehyde 2,4-dinitrophenylhydrazone	299	0.999	
p-Tolualdehyde 2,4-dinitrophenylhydrazone	299	0.999	Overlay of two close compounds
Valeraldehyde-2,4-dinitrophenylhydrazone	265	0.75	at the same m/z, with 2.7 peak resolution 0.105 ppb to 1500 ppb

resolution 0. Too pho to Toop hho

Sample Results

Figure 4 shows an overlay of the two compounds found in the sample. Note that no compounds were found in the blue (UV) chromatogram. All Chromatograms are in full scale.

Injection Results

Conclusions

✓ The LC MS methodology adds an order of magnitude sensitivity to the existing UV method. This allows for

References

1 Carbonyl-DNPH Derivatives in Indoor and In-car Air by UHPL C and Triple Quadrupole LC/MS $\,$

Rong-jie Fu, Maoxin Cao, and Ying Wang

previously undetected peaks to be quantitated.

- ✓ The selectivity of the LCMS allows for faster runtimes
- The ability for library searching of known unknowns within the same run.

https://www.agilent.com/en/promotions/asms

This information is subject to change without notice.

DE97843625

© Agilent Technologies, Inc. 2023 Published in USA, May 31,2023

Agilent Technologies (Shanghai) Co. Ltd, (Agilent PN 5991-2125EN)

2 Anon. Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC),

EPA Method 8315a. Environmental

Protection Agency, Washington, DC, USA (1996).

3 Analysis of DNPH-derivatized Aldehydes and Ketones using the Agilent 1220 Infinity LC System with Diode Array Detector

Sonja Schneider .

Agilent Technologies, Inc. Waldbronn, Germany (Agilent PN 5991-1545EN)

