

Ultra-sensitive and rapid assay of neonicotinoids in honey by UHPLC-MS/MS

Mikaël LEVI¹, Stéphane MOREAU²

¹SHIMADZU France, le Luzard 2, Bd Allende, 77186 Noisiel, France. ²SHIMADZU Europa GmbH,

Albert-Hahn Strasse 6-10, Duisburg, Germany

Introduction

Neonicotinoids are a class of insecticides widely used to protect fields (corn, canola, soybeans...) as well as fruits and vegetables. Their systemic distribution with high efficiency against sucking insects and long residual activity made them very popular within the global pesticide market.

Recently the use of these compounds became very controversial as they were pointed as one cause of the honeybees colony collapse disorder. Since pollination is essential for agriculture, extensive studies have been conducted to evaluate the impact of neonicotinoids on bee health. Following this the European Food Safety Authority limited the use of thiamethoxam, clothianidin and imidacloprid. Some European countries have banned or restricted the use of neonicotinoids.

In order to better understand the effect of these compounds on bees and their contamination in pollen and honey, a highly sensitive assay method was necessary.

Materials and Methods

Standards and Reagents

All analytical standards were provided by Sigma-Aldrich. Internal standards (thiamethoxam-d3, imidacloprid-d4 and chlothinidin-d3) were purchased from Sigma-Aldrich.

Solvents (including water and mobile phase additives) were of ULC/MS quality (Biosolve).

Sample Preparation

Compound extraction was performed using a QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method with an additional dispersive Solid Phase Extraction (dSPE) step.

5 g of honey ($\pm 1\%$) were weighted in a 50 mL polypropylene tube. 5 μ L of internal standard solution at 5 μ g/mL of each compound in acetonitrile was added on honey and let dry for 10 minutes. 10 mL of ultra pure water were added and the samples were homogenized by vortex mixing for 1 minute. 10 mL of acetonitrile were then added followed by vortex mixing for 1 minute.

Salts mix (4 g MgSO₄, 1 g Sodium Citrate, 0.5 g Sodium Citrate sesquihydrate, 1 g NaCl; Biotage Q0020-15V) were added. After manual shaking, samples were centrifuged at 3000 g for 5 minutes at 10 °C.

Supernatant (6 mL) was transferred into a 15 mL tube containing 1200 mg of MgSO₄, 400 mg PSA and 400 mg C18 (Biotage Q0050-15V). After centrifugation at 3000 g and 10 °C for 5 minutes the supernatant was transferred into inert glass vial for analysis (Shimadzu LabTotal 227-34001-01).

UHPLC-MS/MS Conditions

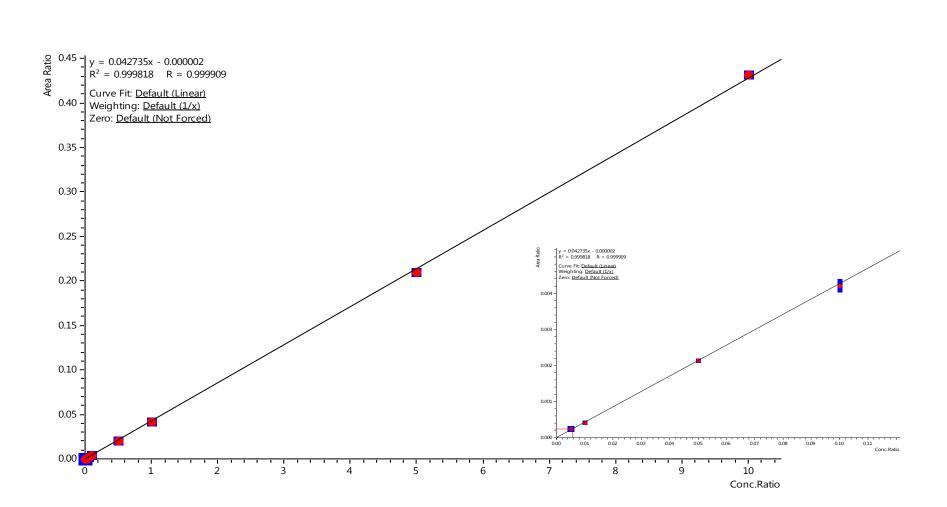
Analysis were performed using a Nexera X2 UHPLC system coupled with LCMS-8060 with Heated ESI in positive ionization (see figure 1).

Mobile phase composition was optimized to generate the highest sensitivity. Ion source parameters (gas flows, temperatures) were also optimized using the Interface Setting Support Software (Shimadzu Corp.)

Figure 1: Overview of the UHPLC-MS/MS system

Table 1: LIHPLC parameters

Table 1. UnPLC parameters					
Parameter	Value				
System	Nexera X2				
Column	ACE SuperC18 100 x 2.1 mm 2 μm				
Column Temperature	30 °C				
Mobile phases	A: Water + 0.05% ammonia B: Methanol + 0.05% ammonia				
Flow rate	0.6 mL/min				
Gradient	5% B to 100%B in 3 min. 100%B to 5% in 0.1 min. Total run time 6 min.				
Injection volume	1 μL (POISe mode with 10 μL of water)				


Table 2: MS parameters

Parameter	Value						
System	LCMS-8060						
Ionization mode	Positive HESI						
Acquisition mode	MRM						
MRM transitions	Name Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamtehoxam Thiamethoxam-D3 Imidacloprid-D4 Clothianidin-D3	MRM Quan 223.1 > 126 250.1 > 169.1 256.1 > 175.1 253.1 > 126 292.1 > 211.1 295.1 > 214.05 260.1 > 179.1 253.1 > 132.05	MRM Qual 223.1 > 56.1 250.1 > 132 258.1 > 211.1 253.1 > 90.1 292.1 > 181.1	ISTD Gro 2 3 2 1 1 1 2 3	oup		
Dwell time	7 to 16 msec depending upon the number of concomitant transitions to ensure to have at least 30 points per peak (max total loop time 115 msec).						
Pause time	1 msec.						
Quadrupole resolution	Q1: Unit Q3: Unit						
Temperature	HESI: 400 °C DL: 200 °C Heater block: 400 °C						
Gaz flow	Interface: 10 L/min		Nebulizer: 3 L/mir	า	Drying: 5 L/min		

Results

Calibration

Calibration curves were prepared in acetonitrile to obtain final concentrations ranging from 2.5 pg/mL (2.5 fg on column) to 5 ng/mL. These concentrations corresponds to 5 ppt and 10 ppb in honey, respectively. A typical calibration curve is shown in figure 2.

Standard (ng/g)	Accuracy (%)
0.005	110
0.010	96.0
0.050	100
0.100	98.4
0.500	97.0
1.000	99.0
5.000	98.4
10.000	101

Figure 2: Calibration curve of clothianidin

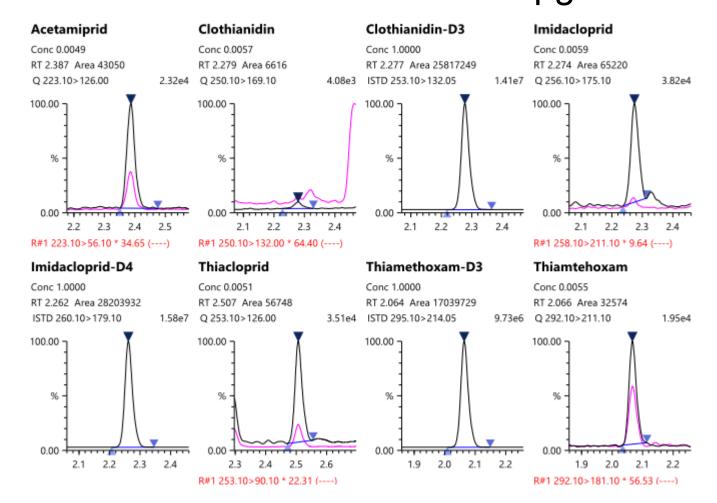
Recovery

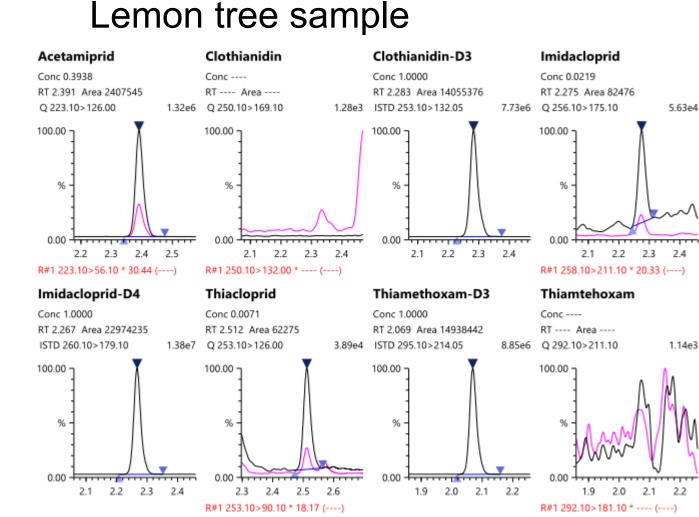
Eight different honeys from the local supermarket were extracted with or without spike at 0.1 ppb. Each extract was injected 5 times to evaluate repeatability in matrix samples. A blank extract (no honey) was prepared to evaluate losses or non specific interactions. Results are presented in Table 3.

Table 3: Recovery results

very results											
	ACETAMIPRID										
	No matrix extract	Provence creamy	Italian creamy honey	Pyrenees liquid	French-Spanish	Thyme liquid honey	Lemon tree creamy honey	Flowers creamy	Flowers liqui		
Mean (ng/g)	0.1073	0.1055	0.1489	0.201	creamy honey 0.159	0.105	0.505	0.180	0.194		
%RSD	1.1%	1.0%	0.9%	0.8%	1.4%	1.1%	0.5%	0.4%	0.9%		
Conc. in raw sample (ng/g)	0	0	0.032	0.082	0.064	0	0.394	0.032	0.081		
% Recovery	107%	106%	117%	119%	94.6%	105%	111%	147%	114%		
70 Recovery	107 /6	10070	117 /0	11370	34.0 /0	103 /0	11170	1-77 /0	117/0		
	CLOTHIANIDIN										
	No matrix extract	Provence creamy	Italian creamy	Pyrenees liquid	French-Spanish	Thyme liquid	Lemon tree	Flowers creamy	Flowers liqu		
	NO IIIatiix extract	honey	honey	honey	creamy honey	honey	creamy honey	honey	honey		
Mean (ng/g)	0.1048	0.098	0.102	0.104	0.102	0.101	0.100	0.101	0.103		
%RSD	2.7%	4.6%	3.1%	1.2%	1.5%	3.0%	3.3%	4.7%	2.9%		
Conc. in raw sample (ng/g)	0	0	0	0	0	0	0	0	0		
% Recovery	105%	98.2%	102%	104%	102%	101%	100%	101%	103%		
	IMIDACLOPRID										
		Provence creamy	Italian creamy	Pyrenees liquid	French-Spanish	Thyme liquid	Lemon tree	Flowers creamy	Flowers liqu		
	No matrix extract	honey	honey	honey	creamy honey	honey	creamy honey	honey	honey		
Mean (ng/g)	0.093	0.091	0.117	0.101	0.095	0.091	0.121	0.097	0.122		
%RSD	1.4%	3.0%	1.8%	2.9%	2.4%	1.1%	1.8%	1.5%	2.4%		
Conc. in raw sample (ng/g)	0	0	0.0248	0.0048	0.0035	0	0.0219	0	0.0222		
% Recovery	93.0%	91.2%	92.5%	96.1%	91.7%	91.1%	98.7%	97.2%	100.0%		
	THIACLOPRID										
	No marking automat	Provence creamy	Italian creamy	Pyrenees liquid	French-Spanish	Thyme liquid	Lemon tree	Flowers creamy	Flowers liqu		
	No matrix extract	honey	honey	honey	creamy honey	honey	creamy honey	honey	honey		
Mean (ng/g)	0.096	0.093	0.095	0.097	0.102	0.100	0.118	0.157	0.110		
%RSD	2.1%	1.1%	0.6%	2.8%	0.9%	0.9%	1.1%	1.5%	0.9%		
Conc. in raw sample (ng/g)	0	0	0	0	0	0	0.0059	0.0505	0.0012		
% Recovery	96.4%	93.4%	94.7%	93.4%	98.4%	100%	112%	107%	108%		
	THIAMETHOXAM										
	No matrix extract	Provence creamy	Italian creamy	Pyrenees liquid	French-Spanish	Thyme liquid	Lemon tree	Flowers creamy	Flowers liqu		
		honey	honey	honey	creamy honey	honey	creamy honey	honey	honey		
Mean (ng/g)	0.104	0.100	0.103	0.101	0.099	0.099	0.097	0.095	0.097		
%RSD	0.9%	1.3%	1.5%	0.8%	1.1%	0.9%	1.3%	1.0%	1.1%		
Conc. in raw sample (ng/g)	0	0	0.0022	0	0	0	0	0	0		
% Recovery	104%	100%	101%	101%	98.6%	98.5%	96.9%	95.5%	97.1%		

Real Sample Analysis


The eight samples used for recovery experiments were assayed as unknowns. Thanks to the very high sensitivity reached, even low concentrations of neonicotinoids were quantified. Results are presented in table 4.


Table 4: Honey sample results (concentrations in ng/g)

Honey	Acetamiprid	Clothianidin	Imidacloprid	Thiacloprid	Thiamethoxam
Provence creamy					
Italy creamy	0.032		0.0248		0.0022
Pyrenees liquid	0.082		0.0048		
French-Spanish	0.064				
Thyme liquid			0.0035		
Lemon tree creamy	0.394		0.0219	0.0059	
Flowers cremy	0.032			0.0505	
Flowers liquid	0.081		0.0222	0.0012	

Chromatograms

Calibration standard at 0.0025 pg/mL

Conclusion

A method for ultra sensitive assay of neonicotinoids in honey was set up. The sample preparation was simple but provided excellent recoveries, whatever is the honey type. The injection mode used prevented the use of tedious evaporation/reconstitution or dilution steps.

The sensitivity obtained enabled assay in real samples at very low levels far under the regulated residue levels.

This method can be a very efficient support tool to better understand the impact of neonicotinoids on honey bee colonies.