ICPMS
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.

Graphene Raman Analyzer: Carbon Nanomaterials Characterization

Technické články | 2017 | MetrohmInstrumentace
RAMAN Spektrometrie
Zaměření
Materiálová analýza
Výrobce
Metrohm

Souhrn

Importance of the Topic


Graphene and related carbon nanomaterials such as carbon nanotubes, nanofibers, graphite and carbon black exhibit exceptional electrical conductivity, thermal transport and mechanical strength due to their unique two-dimensional and tubular structures. Rapid, non-destructive characterization of these materials is essential for quality assurance and process control in research and large-scale manufacturing.

Aims and Overview of the Study


This application note evaluates the performance of a high-throughput portable Raman analyzer for characterizing various carbon nanomaterials. The goals are to demonstrate rapid detection of structural order, defects and impurities, and to assess suitability for at-line and on-line monitoring of production processes.

Methodology and Instrumentation


Instrumentation Used:
  • i-Raman Pro HT portable Raman spectrometer with 532 nm excitation and fiber-optic sampling probe
  • Back-thinned CCD detector cooled to –25 °C
  • BWSpec software for data acquisition, airPLS background correction, Savitzky–Golay smoothing and automated parameter calculation

Measurement Protocol:
  • Graphene-coated sheets: 35 mW laser power, 60 s integration, single acquisition
  • Carbon nanofibers and carbon black powders: ~21 mW laser power, 90 s integration, three replicates

Main Results and Discussion


Key Raman features (D, G and 2D bands) were used to evaluate crystallinity, defect density and layer characteristics:
  • Graphene powders showed ID/IG ratios ranging from ~0.06 to 0.47. Higher ratios and the presence of a D′ band (∼1620 cm⁻¹) indicated increased disorder and defects. Variations in G-band width and 2D-band asymmetry correlated with layer number and crystallinity.
  • Carbon nanofibers exhibited prominent D bands (ID/IG up to ~1.37), reflecting high defect density; asymmetry in the G-band indicated contributions from curved graphene layers within nanotubes.
  • Carbon black samples lacked a 2D band and showed high ID/IG ratios (0.55–0.77), confirming their amorphous structure.
  • Detection of Raman peaks at ~213 and 280 cm⁻¹ revealed residual Fe₂O₃ hematite in nanofiber samples, highlighting the method’s sensitivity to impurities.

Benefits and Practical Applications of the Method


The portable Raman approach enables fast, reproducible at-line or on-line analysis without complex sample preparation. Automated data processing supports real-time monitoring of material quality, defect levels and impurity detection, facilitating process optimization and consistent product specification.

Future Trends and Applications


Advances in portable Raman instrumentation, integration with manufacturing execution systems and machine-learning-based spectral interpretation will expand capabilities for continuous process control, spatial mapping of defects and multi-parameter quality assessment in emerging carbon-based technologies.

Conclusion


A high-throughput portable Raman analyzer effectively characterizes a range of carbon nanomaterials by extracting critical spectral parameters such as ID/IG ratios, band widths and impurity signatures. This method supports rapid, non-destructive quality control and process monitoring in graphene and carbon nanomaterial production.

References


  1. Ahn C.; Fong S.W.; Kim Y.; Lee S.; Sood A.; Neumann C.M.; Asheghi M.; Goodson K.E.; Pop E.; Wong H.S.P. Nano Letters 2015, 15, 6809–6814.
  2. Hegab H.; Zou L. Journal of Membrane Science 2015, 484, 95–106.
  3. Luo C.; Xie H.; Wang Q.; Luo G.; Liu C. Journal of Nanomaterials 2015, 2015, 1–10.
  4. Mo Y.L.; Roberts R.H. Carbon Nanofiber Concrete for Damage Detection of Infrastructure, InTech 2013.
  5. Deloitte Global analysis 2015.
  6. Childres I.; Jauregui L.A.; Park W.; Cao H.; Chen Y.P. In New Developments in Photon and Materials Research 2013, pp. 1–20.
  7. Ferrari A.C. Solid State Communications 2007, 143, 47–57.
  8. Nemanich R.J.; Solin S.A. Physical Review B 1979, 20, 392–401.

Obsah byl automaticky vytvořen z originálního PDF dokumentu pomocí AI a může obsahovat nepřesnosti.

PDF verze ke stažení a čtení
 

Podobná PDF

Toggle
Characterization of carbon materials with Raman spectroscopy
Application Note 410000059-B Characterization of carbon materials with Raman spectroscopy Following the guidelines of ASTM E3220 Carbon nanomaterials such as graphene, graphite, Raman spectroscopy is a valuable tool for the and carbon nanotubes each have unique physical and characterization of…
Klíčová slova
raman, ramanband, bandbwspec, bwspeccarbon, carbongraphene, graphenespectroscopy, spectroscopynanotubes, nanotubesdisorder, disordertek, teknanomaterials, nanomaterialslaser, lasercharacterization, characterizationspectra, spectrastraman, stramanvaluable
Choosing the Most Suitable Laser Wavelength For Your Raman Application
For more information, please contact: [email protected] or +1 (855) 297-2626 Choosing the Most Suitable Laser Wavelength For Your Raman Application Over the years, dispersive Raman spectroscopy has increasingly been implemented for sample analysis including material identification, biomedical research, and art…
Klíčová slova
raman, ramandatasheet, datasheetlaser, lasermedium, mediumexcitation, excitationconsideration, considerationspectrum, spectrumalso, alsosloping, slopingabsorption, absorptionfluorescence, fluorescenceweaknesses, weaknesseslonger, longernanotubes, nanotubesmuch
Carbon Analysis with High Signal Throughput Portable Raman Spectroscopy
410000059-A Carbon Analysis with High SignalThroughput Portable Raman Spectroscopy Introduction Figure 1. Structure of carbon allotropes. Carbon nanomaterials such as graphene, graphite, and carbon nanotubes (Figure 1) each have unique physical and thermal properties that make them important in industries…
Klíčová slova
metrohm, metrohmraman, ramanswcnts, swcntscarbon, carbonband, bandnanomaterials, nanomaterialsspectroscopy, spectroscopysignalthroughput, signalthroughputdegenerate, degenerateparameter, parameterlaser, laservaluable, valuablebwspec, bwspecwalled, wallednanotubes
STRaman Technology: Raman for See Through Material Identification
For more information, please contact: [email protected] or +1 (302) 368-7824 STRaman™ Technology: Raman for See Through Material Identification Jun Zhao B&W Tek Introduction A new Raman system design is presented that expands the applicability of Raman to See Through diffusely…
Klíčová slova
raman, ramanstraman, stramanthrough, throughenvelope, envelopesampling, samplingspectrum, spectrumsee, seemeasured, measuredglucose, glucosemanila, manilabenzoate, benzoateconfiguration, configurationpro, protek, tekscattering
Další projekty
GCMS
LCMS
Sledujte nás
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.